Many theoretical studies have been made to describe multiaxial ratchetting and most of them have been concentrated on the location of the yield domain, not on its shape. In this paper, we introduce nonlinear kinematic constitutive equations consistent with ratchetting modeling into the distortional model of subsequent yield surfaces proposed by Kurtyka, T., and Zyczkowski, M. We use an efficient polycrystalline model to simulate complex tests including yield surface detections in order to get some reference predictions to use in the development of the constitutive laws introduced into the distortional model. The distortional model is thus qualitatively identified with the polycrystalline model and then quantitatively identified with the experimental results on a type 316L stainless steel. It gives promising results.

1.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
Multiaxial Cyclic Ratchetting under Multiple Step Loading
,”
Int. J. Plast.
,
10
(
8
), pp.
849
870
.
2.
Ringsberg
,
J. W.
,
2000
, “
Cyclic Ratchetting and Failure of a Pearlitic Rail Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
, pp.
747
758
.
3.
Ringsberg
,
J. W.
,
Loo-Morey
,
M.
,
Josefson
,
B. L.
,
Kapoor
,
A.
, and
Benon
,
J. H.
,
2000
, “
Prediction of Fatigue Crack Initiation for Rolling Contact Fatigue
,”
Int. J. Fatigue
,
22
, pp.
205
215
.
4.
Ponter
,
A. R. S.
, and
Leckie
,
F. A.
,
1998
, “
Bounding Properties of Metal-Matrix Composites Subjected to Cyclic Thermal Loading
,”
J. Mech. Phys. Solids
,
46
(
4
), pp.
697
717
.
5.
Ponter
,
A. R. S.
, and
Leckie
,
F. A.
,
1998
, “
On the Behavior of Metal Matrix Composites Subjected to Cyclic Thermal Loading
,”
J. Mech. Phys. Solids
,
46
(
11
), pp.
2183
2199
.
6.
Chaboche, J.-L., 1987, “Cyclic Plasticity Modeling and Ratchetting Effects,” Proc. of Constitutive Laws for Engineering Materials, pp. 47–58.
7.
Chaboche
,
J.-L.
, and
Nouailhas
,
D.
,
1989
, “
Constitutive Modeling of Ratchetting Effects. Part I: Experimental Facts and Properties of Classical Models
,”
ASME J. Eng. Mater. Technol.
,
111
, pp.
384
392
.
8.
Chaboche
,
J. L.
, and
Nouailhas
,
D.
,
1989
, “
Constitutive Modeling of Ratchetting Effects. Part II: Possibilities of Some Additional Kinematic Rules
,”
ASME J. Eng. Mater. Technol.
,
111
, pp.
409
416
.
9.
Ruggles
,
M. B.
, and
Krempl
,
E.
,
1989
, “
The influence of the Test Temperature on the Ratchetting Behavior of Type 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol.
,
111
, pp.
378
383
.
10.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects
,”
Int. J. Plast.
,
7
, pp.
661
678
.
11.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1992
, “
Ratchetting in Cyclic Plasticity, Part I: Uniaxial Behavior
,”
Int. J. Plast.
,
8
, pp.
91
116
.
12.
Hassan
,
T.
,
Corona
,
E.
, and
Kyriakides
,
S.
,
1992
, “
Ratchetting in Cyclic Plasticity, Part II: Multiaxial Behavior
,”
Int. J. Plast.
,
8
, pp.
117
146
.
13.
Cabrillat, M.-T., and Gatt, J.-M., 1993, “Evaluation of Thermal Ratchetting on Axisymetrical Thin Shells at the Free Level of Sodium-Inelastic Response,” Proceedings of SMIRT 12, E05/4.
14.
Delobelle
,
P.
,
1993
, “
Synthesis of the Elastoviscoplastic Behavior and Modelization of an Austenitic Stainless Steel Over a Large Temperature Range, under Uniaxial and Biaxial Loadings, Part I: Behavior
,”
Int. J. Plast.
,
9
, pp.
65
85
.
15.
Delobelle
,
P.
,
1993
, “
Synthesis of the Elastoviscoplastic Behavior and Modelization of an Austenitic Stainless Steel Over a Large Temperature Range, under Uniaxial and Biaxial loadings, Part II: Phenomenological Modelization
,”
Int. J. Plast.
,
9
, pp.
87
118
.
16.
Delobelle, P., and Bocher, L., 1994, “Experimental Study and Phenomenological Modelization of Uni and Multidirectional Ratchet,” Proceedings, Fourth International Conference on Biaxial/Multiaxial Fatigue, pp. 255–268.
17.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1994
, “
Ratchetting of Cyclically Hardening and Softening Materials: I. Uniaxial Behavior
,”
Int. J. Plast.
,
10
(
2
), pp.
149
184
.
18.
Hassan
,
T.
, and
Kyriakides
,
S.
,
1994
, “
Ratchetting of Cyclically Hardening and Softening Materials: II. Multiaxial Behavior
,”
Int. J. Plast.
,
10
(
2
), pp.
185
212
.
19.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
Cyclic Ratchetting of 1070 Steel under Multiaxial Stress State
,”
Int. J. Plast.
,
10
(
5
), pp.
579
608
.
20.
Ohno
,
N.
, and
Wang
,
J. D.
,
1994
, “
Kinematic Hardening Rules for Simulation of Ratchetting Behavior
,”
European Journal of Mechanics
,
13
, pp.
519
531
.
21.
Delobelle
,
P.
,
Robinet
,
P.
, and
Bocher
,
L.
,
1995
, “
Experimental Study and Phenomenological Modelization of Ratchet under Uniaxial and Biaxial Loading on an Austenitic Stainless Steel
,”
Int. J. Plast.
,
11
(
4
), pp.
295
330
.
22.
Geyer, P., 1995, “Modeling of Ratchetting in Biaxial Loading of the Stainless Steel 316 SPH between 20 and 600°C,” Proceedings of Plasticity’95, pp. 563–596.
23.
McDowell
,
D. L.
,
1995
, “
Stress State Dependence of Cyclic Ratchetting Behavior of Two Rail Steels
,”
Int. J. Plast.
,
11
(
4
), pp.
397
421
.
24.
Haupt
,
A.
, and
Schinke
,
B.
,
1996
, “
Experiments on Ratchetting behavior of AISI 316L(N) Austenitic Steel a Room Temperature
,”
ASME J. Eng. Mater. Technol.
,
118
, pp.
281
284
.
25.
Bouchou
,
A.
, and
Delobelle
,
P.
,
1996
, “
Behavior and Modeling of a 17-12 SPH Stainless Steel under Cyclic, Uni and Bidirectional, Anisothermal Loadings. Part I: Behavior
,”
Int. J. Plast.
,
12
, pp.
295
303
.
26.
Corona
,
E.
,
Hassan
,
T.
, and
Kyriakides
,
S.
,
1996
, “
On the Performance of Kinematic Hardening Rules in Predicting a Class of Biaxial Ratchetting Histories
,”
Int. J. Plast.
,
12
(
1
), pp.
117
145
.
27.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratchetting Plasticity, Part I: Development of Constitutive Relations
,”
ASME J. Appl. Mech.
,
63
, pp.
720
725
.
28.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratchetting Plasticity, Part II: Comparison of Model Simulations With Experiments
,”
ASME J. Appl. Mech.
,
63
, pp.
726
733
.
29.
Bocher, L., and Delobelle, P., 1997, “Experimental Study of the Cyclic Behavior of a Stainless Steel under Complex Multiaxial Loadings in Tension-Torsion-Internal Pressure,” Proceedings of SMIRT, 9, pp. 51–58.
30.
Ohno
,
N.
,
1997
, “
Recent Progress in Constitutive Modeling for Ratchetting
,”
Materials Science Research International
,
3
(
1
), pp.
1
9
.
31.
Portier
,
L.
,
Calloch
,
S.
,
Marquis
,
D.
, and
Geyer
,
P.
,
2000
, “
Ratchetting under Tension-Torsion Loadings: Experiments and Modeling
,”
Int. J. Plast.
,
16
, pp.
303
335
.
32.
Bocher
,
L.
,
Delobelle
,
P.
,
Robinet
,
P.
, and
Feaugas
,
X.
,
2001
, “
Mechanical and Microstructural Investigations of an Austenitic Stainless Steel Under Non-Proportional Loadings in Tension-Torsion-Internal and External Pressure
,”
Int. J. Plast.
,
17
(
11
), pp.
1491
1530
.
33.
Gaudin, C., and Feaugas, X., 2000, “On the origin of the ratchetting process in austenitic stainless steel AISI 316L at T<0.4Tm,” Proceedings, Euromat 2000, Miannay et al., Elsevier, Vol. 2, pp. 1039–1046, Tours.
34.
Cailletaud
,
G.
,
1992
, “
A Micromechanical Approach to Inelastic Behavior of Metals
,”
Int. J. Plast.
,
8
, pp.
55
73
.
35.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules with Critical State of Dynamic Recovery: Part I-Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
,
9
, pp.
375
390
.
36.
Burlet, H., and Cailletaud, G., 1987, “Modeling of Cyclic Plasticity in Finite Element Codes,” Proc. of Constitutive Laws for Engineering Materials: Theory and Applications, Desai et al., Elsevier, Tucson, AZ, pp. 1157–1164.
37.
Bari
,
S.
, and
Hassan
,
T.
,
2000
, “
Anatomy of Coupled Constitutive Models for Ratcheting Simulation
,”
Int. J. Plast.
,
16
, pp.
381
409
.
38.
Phillips
,
A.
, and
Tang
,
J.-L.
,
1972
, “
The Effect of Loading Path on the Yield Surface at Elevated Temperatures
,”
Int. J. Solids Struct.
,
8
, pp.
463
474
.
39.
Marjanovic
,
R.
, and
Szczepinski
,
W.
,
1975
, “
On the Effect of Biaxial Cyclic Loading on the Yield Surface of M-63 Brass
,”
Acta Mech.
,
23
, pp.
65
74
.
40.
Phillips
,
A.
, and
Lee
,
C.-W.
,
1979
, “
Yield Surfaces and Loading Surfaces. Experiments and Recommendations
,”
Int. J. Solids Struct.
,
15
, pp.
715
729
.
41.
Phillips
,
A.
, and
Lu
,
W.-Y.
,
1984
, “
An Experimental Investigation of Yield Surfaces and Loading Surfaces of Pure Aluminum with Stress-controlled and Strain-controlled Paths of Loading
,”
ASME J. Eng. Mater. Technol.
,
106
, pp.
349
354
.
42.
Stout
,
M. G.
,
Martin
,
P. L.
,
Helling
,
D. E.
, and
Canova
,
G. R.
,
1985
, “
Multiaxial Yield Behavior of 1100 Aluminum Following Various Magnitudes of Prestrain
,”
Int. J. Plast.
,
1
, pp.
163
174
.
43.
Rousset, M., 1985, “Surface Seuil de Plasticite´: De´termination Automatique et Mode´lisation,” Ph.D. thesis, Universite´ Paris 6, Paris.
44.
Wu
,
H. C.
, and
Yeh
,
W. C.
,
1991
, “
On the Experimental Determination of Yield Surfaces and Some Results of Annealed 304 Stainless Steel
,”
Int. J. Plast.
,
7
, pp.
803
826
.
45.
Khan
,
A. S.
, and
Wang
,
X.
,
1993
, “
An Experimental Study on Subsequent Yield Surface after Finite Shear Prestraining
,”
Int. J. Plast.
,
9
, pp.
889
905
.
46.
Szczepinski
,
W.
, and
Miastkowski
,
J.
,
1994
, “
On Experimental Studies of Yield Surfaces of Metals; A More General Approach
,”
Arch. Mech.
,
46
(
1–2
), pp.
151
176
.
47.
Kurtyka
,
T.
, and
Zyczkowski
,
M.
,
1985
, “
A Geometric Description of Distortional Plastic Hardening of Deviatoric Materials
,”
Arch. Mech.
,
37
(
4–5
), pp.
383
395
.
48.
Kurtyka
,
T.
, and
Zyczkowski
,
M.
,
1996
, “
Evolution Equations for Distortional Plastic Hardening
,”
Int. J. Plast.
,
12
(
2
), pp.
191
213
.
49.
Pilvin, P., 1990, “Approches Multie´chelles pour la pre´vision du Comportement ane´lastique des me´taux,” Ph.D. thesis, Universite´ Paris 6, Paris.
50.
Pilvin
,
P.
, and
Geyer
,
P.
,
1997
, “
Modeling of Uniaxial and Multiaxial Ratchetting of SS 316SPH by a Polycrystalline Approach,” Technical Report HT-2C/97/065/A, EDF, Lyon.
51.
Vincent, L., Calloch, S., Franc¸ois, M., and Marquis, D., 2000, “Ratchetting modeling though yield surface distortion,” Proceedings, Euromat 2000, Miannay et al., Elsevier, Vol. 1, pp. 469–474, Tours.
52.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Baushinger Effect,” CEGB Report RD/B/N731, Berkeley Nuclear Laboratories.
53.
Marquis, D., 1979, “Mode´lisation et Identification de l’E´crouissage Anisotrope des Me´taux,” Ph.D. thesis, Universite´ Paris 6, Paris.
54.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules with Critical State of Dynamic Recovery: Part II-Application to Experiments of Ratchetting Behavior
,”
Int. J. Plast.
,
9
, pp.
391
403
.
55.
Cailletaud, G., and Pilvin, P., 1993, “Identification and Inverse Problems: a Modular Approach,” ASME Winter Annual Meeting on Material Parameter Estimation for Modern Constitutive Equations, pp. 33–45, New-Orleans.
56.
Portier, L., 2000, “Contribution a` l’E´tude de la De´formation Progressive des Structures,” Ph.D. thesis, ENS-Cachan, Cachan.
You do not currently have access to this content.