Recent studies have shown that Pt-aluminide—a common bond coat material in thermal barrier coatings—undergoes martensitic transformations during thermal cycling. The transformations are associated with both large transformation strain and a strain hysteresis, leading to accumulation of a mismatch strain. Thermal barrier systems based on Pt-aluminide bond coats are susceptible to interfacial morphological instabilities. In this study, we investigate how the cyclic martensitic transformation influences the morphology. Two key results are: (i) the morphological instabilities are highly sensitive to the thermo-mechanical properties of the substrate due to the martensitic transformation; (ii) the hysteresis associated with cyclic martensitic transformation cannot drive the morphological instabilities; the strains associated with the formation of the thermally grown oxide do.

1.
Miller
,
R. A.
,
1984
, “
Oxidation-Based Model for Thermal Barrier Coating Life
,”
J. Am. Ceram. Soc.
,
67
, pp.
517
521
.
2.
Strangman
,
T. E.
,
1985
, “
Thermal Barrier Coatings for Turbine Airfoils
,”
Thin Solid Films
,
127
, pp.
93
105
.
3.
DeMasi-Marcin
,
J. T.
, and
Gupta
,
D. K.
,
1994
, “
Protective Coatings in the Gas-Turbine Engine
,”
Surf. Coat. Technol.
,
68/69
, pp.
1
9
.
4.
Wright
,
P. K.
, and
Evans
,
A. G.
,
1999
, “
Mechanisms Governing the Performance of Thermal Barrier Coatings
,”
Curr. Opin. Solid State Mater. Sci.
,
4
, pp.
255
265
.
5.
Johnson
,
C. A.
,
Ruud
,
J. A.
,
Bruce
,
R.
, and
Wortman
,
D.
,
1998
, “
Relationships Between Residual Stress, Microstructure and Mechanical Properties of Electron Beam Physical Vapor Deposition Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
109
, pp.
80
85
.
6.
Gell
,
M.
,
Vaidyanathan
,
K.
,
Barber
,
B.
,
Cheng
,
J.
, and
Jordan
,
E.
,
1999
, “
Mechanism of Spallation in Platinum Aluminide/Electron Beam Physical Vapor-Deposited Thermal Barrier Coatings
,”
Metall. Trans. A
,
30
, pp.
427
435
.
7.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
12
, pp.
280
284
.
8.
Ruud
,
J. A.
,
Bartz
,
A.
,
Borom
,
M. P.
, and
Johnson
,
C. A.
,
2001
, “
Strength Degradation and Failure Mechanisms of Electron-Beam Physical-Vapor-Deposited Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
84
, pp.
1545
1552
.
9.
He
,
M. Y.
,
Evans
,
A. G.
, and
Hutchinson
,
J. W.
,
2000
, “
The Ratcheting of Compressed Thermally Grown Thin Films on Ductile Substrates
,”
Acta Mater.
,
48
, pp.
2593
2601
.
10.
Karlsson
,
A. M.
, and
Evans
,
A. G.
,
2001
, “
A Numerical Model for the Cyclic Instability of Thermally Grown Oxides in Thermal Barrier Systems
,”
Acta Mater.
,
49
, pp.
1793
1804
.
11.
Mumm
,
D. R.
,
Evans
,
A. G.
, and
Spitsberg
,
I.
,
2001
, “
Characterization of Cyclic Displacement Instability for a Thermally Grown Oxide in a Thermal Barrier System
,”
Acta Mater.
,
49
, pp.
2329
2340
.
12.
Karlsson
,
A. M.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2002
, “
A Fundamental Model of Cyclic Instabilities in Thermal Barrier Systems
,”
J. Mech. Phys. Solids
,
50
, pp.
1565
1589
.
13.
Karlsson
,
A. M.
,
Levi
,
C. G.
, and
Evans
,
A. G.
,
2002
, “
A Model Study of Displacement Instabilities During Cyclic Oxidation
,”
Acta Mater.
,
50
, pp.
1263
1273
.
14.
Karlsson
,
A. M.
,
Xu
,
T.
, and
Evans
,
A. G.
,
2002
, “
The Effect of the Thermal Barrier Coating on the Displacement Instability in Thermal Barrier Systems
,”
Acta Mater.
,
50
, pp.
1211
1218
.
15.
Karlsson
,
A. M.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2003
, “
The Displacement of the Thermally Grown Oxide in Thermal Barrier Systems Upon Temperature Cycling
,”
Mater. Sci. Eng.
,
A351
, pp.
244
257
.
16.
Pennefather
,
R. C.
, and
Boone
,
D. H.
,
1995
, “
Mechanical Degradation of Coating Systems in High-Temperature Cyclic Oxidation
,”
Surf. Coat. Technol.
,
76–77
, pp.
47
52
.
17.
ABAQUS, Hibbitt, Karlsson and Sorensen Inc, Pawtucket, RI.
18.
Pan
,
D.
,
Chen
,
M. W.
,
Wright
,
P. K.
, and
Hemker
,
K. J.
,
2003
, “
Evolution of a Diffusion Aluminide Bond Coat for Thermal Barrier Coatings During Thermal Cycling
,”
Acta Mater.
,
51
, pp.
2205
2217
.
19.
Chen
,
M. W.
,
Ott
,
R. T.
,
Hufnage
,
T. C.
,
Wright
,
P. K.
, and
Hemker
,
K. J.
,
2003
, “
Microstructural Evolution of Platinum Modified Nickel Aluminide Bond Coat During Thermal Cycling
,”
Surf. Coat. Technol.
,
163–164
, pp.
25
30
.
20.
Zhang
,
Y.
,
Haynes
,
J. A.
,
Pint
,
B. A.
,
Wright
,
I. G.
, and
Lee
,
W. Y.
,
2003
, “
Martensitic Transformation in NiAl and (Ni,Pt)Al Bond Coatings
,”
Surf. Coat. Technol.
,
163–164
, pp.
19
24
.
21.
Karlsson, A. M., and Evans, A. G., 2003, work in progress.
You do not currently have access to this content.