An abnormal friction law refers to the case where the friction force does not increase monotonically with the normal pressure. We investigate the possibility of abnormal tribological behavior for two surfaces coated with aligned single-walled carbon nanotubes (SWCNTs). Detailed molecular dynamics simulations for aligned SWCNTs predict modulated variation between the kinetic friction force and the applied pressure. The interacting SWCNTs float with respect to each other at about the equilibrium separation of van der Waals interaction, and the wavy contact profile breaks the symmetry of the contacting cross-section. Cases treated by molecular dynamics simulation include two aligned (10,10) SWCNTs with periodic end conditions, and a stack of three aligned (10,10) SWCNTs with free end boundary conditions. A continuum theory based on the wall deflection under finite deformation, in combination with an adhesion criterion similar to the JKR theory, on the other hand, predicts a declining law between the frictional force and the pressure. The correlation of the data obtained through the atomistic and the continuum approaches relies on a deeper understanding on the friction process among SWCNTs.

1.
Bowden, F. P., and Tabor, D., 1950, The Friction and Lubrication of Solids, Oxford, Claredon.
2.
Iijima
,
S.
, and
Ichlhashi
,
T.
,
1993
, “
Single-Shell Carbon Nanotubes of 1 nm Diameter
,”
Nature (London)
,
363
, pp.
603
605
.
3.
Bethune
,
D. S.
,
Kiang
,
C. H.
,
Devries
,
M. S.
,
Gorman
,
G.
,
Savoy
,
R.
,
Vazquez
,
J.
, and
Beyers
,
R.
,
1993
, “
Cobalt-Catalysed Growth of Carbon Nanotubes With Single-Atomic-Layer Walls
,”
Nature (London)
,
363
, pp.
605
607
.
4.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
,
381
, pp.
678
680
.
5.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
,
1997
, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
,
277
, pp.
1971
1975
.
6.
Goze
,
C.
,
Vaccarini
,
L.
,
Henrard
,
L.
,
Bernier
,
P.
,
Hernandez
,
E.
, and
Rubio
,
A.
,
1999
, “
Elastic and Mechanical Properties of Carbon Nanotubes
,”
Synth. Met.
,
103
, pp.
2500
2501
.
7.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
, pp.
2511
2514
.
8.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1997
, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
,
8
, pp.
341
348
.
9.
Yakobson
,
B. I.
,
1998
, “
Mechanical Relaxation and “Intramolecular Plasticity” in Carbon Nanotubes
,”
Appl. Phys. Lett.
,
72
, pp.
918
920
.
10.
Yu
,
M.-F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
, pp.
637
640
.
11.
Avouris
,
Ph.
,
Hertel
,
T.
,
Martel
,
R.
,
Schmidt
,
T.
,
Shea
,
H. R.
, and
Walkup
,
R. E.
,
1999
, “
Carbon Nanotubes: Nanomechanics, Manipulation, and Electron Devices
,”
Appl. Surf. Sci.
,
141
, pp.
201
209
.
12.
Yakobson, B. I., and Avouris, Ph., 2001, “Mechanical Properties of Carbon Nanotubes,” Carbon Nanotubes, Series: Topics in Applied Physics, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds. 80, pp. 287–329.
13.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M. F.
, and
Ruoff
,
R. S.
,
2002
, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
,
55
, pp.
495
533
.
14.
Huang, Y. Y., and Wang, Z. L., 2003 Mechanics of Nanotubes, Comprehensive Structural Integrity, 8, “Interfacial and Nanoscale Failure,” W. Gerberich and W. Yang, eds., Elsevier Science, pp. 551–579, Chap. 8.16.
15.
Wildoer
,
J. W. G.
,
Venema
,
L. C.
,
Rinzler
,
A. G.
,
Smalley
,
R. E.
, and
Dekker
,
C.
,
1998
, “
Electronic Structure of Atomically Resolved Carbon Nanotubes
,”
Nature (London)
,
391
, pp.
59
62
.
16.
Odom
,
T. W.
,
Huang
,
J.-L.
,
Kim
,
P.
, and
Lieber
,
C. M.
,
1998
, “
Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes
,”
Nature (London)
,
391
, pp.
62
64
.
17.
Darkrim
,
F.
, and
Levesque
,
D.
,
1998
, “
Monte Carlo Simulations of Hydrogen Adsorption in Single-Walled Carbon Nanotubes
,”
J. Chem. Phys.
,
109
, pp.
4981
4984
.
18.
Ye
,
Y.
,
Anh
,
C. C.
,
Witham
,
C.
,
Fultz
,
B.
,
Liu
,
J.
,
Rinzler
,
A. G.
,
Colbert
,
D.
,
Smith
,
K. A.
, and
Smalley
,
R. E.
,
1999
, “
Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
74
, pp.
2307
2309
.
19.
Kolmogorov
,
A. N.
, and
Crespi
,
V. H.
,
2000
, “
Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
85
, pp.
4727
4730
.
20.
Falvo
,
M. R.
,
Taylor
, II,
R. M.
,
Helser
,
A.
,
Chi
,
V.
,
Brooks
, Jr.,
F. P.
,
Washburn
,
S.
, and
Superfine
,
R.
,
1999
, “
Nanometer Scale Rolling and Sliding of Carbon Nanotubes
,”
Nature (London)
,
397
, pp.
236
238
.
21.
Falvo
,
M. R.
,
Steele
,
J.
,
Taylor
, II,
R. M.
, and
Superfine
,
R.
,
2000
, “
Evidence of Commensurate Contact and Rolling Motion: AFM Manipulation Studies of Carbon Nanotubes on HOPG
,”
Tribol. Lett.
,
9
, pp.
73
76
.
22.
Falvo
,
M. R.
,
Steele
,
J.
,
Taylor
, II,
R. M.
, and
Superfine
,
R.
,
2000
, “
Gearlike Rolling Motion Mediated by Commensurate Contact: Carbon Nanotubes on HOPG
,”
Phys. Rev. B
,
62
, pp.
R10665–R10667
R10665–R10667
.
23.
Buldum
,
A.
, and
Lu
,
J. P.
,
1999
, “
Atomic Scale Sliding and Rolling of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
83
, pp.
5050
5053
.
24.
Cumings
,
J.
, and
Zettl
,
A.
,
2000
, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
,
289
, pp.
602
604
.
25.
Yu
,
M.-F.
,
Yakobson
,
B. I.
, and
Ruoff
,
R. S.
,
2000
, “
Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes
,”
J. Phys. Chem. B
,
104
, pp.
8764
8767
.
26.
Gao
,
G.
,
Cagin
,
T.
, and
Goddard
, III,
W. A.
,
1998
, “
Energetics, Structure, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes
,”
Nanotechnology
,
9
, pp.
184
191
.
27.
Han
,
J.
,
Globus
,
A.
,
Jaffe
,
R.
, and
Deardorff
,
G.
,
1997
, “
Molecular Dynamics Simulation of Carbon Nanotube Based Gears
,”
Nanotechnology
,
8
, pp.
95
102
.
28.
Yoon
,
Y.-G.
,
Mazzoni
,
M. S. C.
,
Choi
,
H. J.
,
Ihm
,
J.
, and
Louie
,
S. G.
,
2001
, “
Structural Deformation and Intertube Conductance of Crossed Carbon Nanotube Junctions
,”
Phys. Rev. Lett.
,
86
, pp.
688
691
.
29.
Yang
,
W.
,
Wang
,
H. T.
, and
Huang
,
Y.
,
2003
, “
Abnormal Tribological Behavior of Multiwalled Nanotube Rafts, Part I: Aligned Rafts
,” Proc. R. Soc. London, Ser. A, submitted.
30.
Yang
,
W.
,
Wang
,
H. T.
, and
Huang
,
Y.
,
2003
, “
Abnormal Tribological Behavior of Multiwalled Nanotube Rafts, Part II: Inclined Rafts
,” Proc. R. Soc. London, Ser. A, submitted.
31.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films
,”
Phys. Rev. B
,
42
, pp.
9458
9471
.
32.
Lu
,
J. P.
,
1997
, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
,
79
, pp.
1297
1300
.
33.
Zhao
,
Y.
,
Ma
,
C.-C.
,
Chen
,
G.-H.
, and
Jiang
,
Q.
,
2003
, “
Energy Dissipation Mechanisms in Carbon Nanotube Oscillators
,”
Phys. Rev. Lett.
,
91
, Art. No.
175504
175504
.
34.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
,
2002
, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
,
39
, pp.
3893
3906
.
35.
Robertson
,
D. H.
,
Brenner
,
D. W.
, and
Mintmire
,
J. W.
,
1992
, “
Energetics of Nanoscale Graphitic Tubules
,”
Phys. Rev. B
,
45
, pp.
12592
12595
.
36.
Jiang
,
H.
,
Zhang
,
P.
,
Liu
,
B.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Gao
,
H.
, and
Hwang
,
K. C.
,
2003
, “
The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes
,”
Comput. Mater. Sci.
,
28
, pp.
429
442
.
37.
Timoshenko, S. P., and Goodier, J. N., 1987, Theory of Elasticity, 3rd Ed., McGraw-Hill, New York.
38.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
, pp.
301
313
.
39.
Yu
,
H. H.
, and
Suo
,
Z.
,
1998
, “
A Model of Wafer Bonding by Elastic Accommodation
,”
J. Mech. Phys. Solids
,
46
, pp.
829
844
.
You do not currently have access to this content.