Abstract
The analysis in part I of this series is extended to the case of inclined and randomly distributed multiwall carbon nanotube (MWCNT) rafts that are brought into contact. The MWCNTs are modeled by elastic and cylindrically anisotropic materials. The JKR theory of adhesion is adopted. With the incorporation of three-dimensional contact configuration that features the inclined contact, we are able to show that the abnormal tribological behavior, in drastic contrast to the classical Amonton’s law, persists for both inclined and randomly oriented rafts.
Issue Section:
Special Section on Nanomaterials and Nanomechanics
1.
Yang
, W.
, Wang
, H. T.
, and Huang
, Y.
, 2004, “Abnormal tribological behavior of multiwalled nanotube rafts, Part I: Aligned rafts
,” J. Eng. Mater. Technol.
0094-4289, 127
(4
), pp. 383
–392
.2.
Bowden
, F. P.
, and Tabor
, D.
, 1950, The Friction and Lubrication of Solids
, Clarendon
, Oxford.3.
Johnson
, K. L.
, Kendall
, K.
, and Roberts
, A. D.
, 1971, “Surface energy and contact of elastic solids
,” Proc. R. Soc. London, Ser. A
1364-5021, 324
, pp. 301
–313
.4.
Willis
, J. R.
, 1966, “Hertzian contact of anisotropic bodies
,” J. Mech. Phys. Solids
0022-5096, 14
, pp. 163
–176
.5.
Barnett
, D. M.
, and Lothe
, J.
, 1974, “An image force theorem for dislocations in anisotropic bicrystals
,” J. Phys. F: Met. Phys.
0305-4608, 4
, pp. 1618
–1635
.6.
Barnett
, D. M.
, and Lothe
, J.
, 1975, “Line force loading on anisotropic half-spaces and wedges
,” Phys. Norv.
0031-8930, 8
, pp. 13
–22
.7.
Bacon
, D. J.
, Barnett
, D. M.
, and Scattergood
, R. O.
, 1978, “Anisotropic continuum theory of lattice defects
,” Prog. Mater. Sci.
0079-6425, 23
, pp. 53
–262
.8.
Dongye
, C.
, and Ting
, T. C. T.
, 1989, “Explicit expressions of Barnett–Lothe tensors and their associated tensors for orthotropic materials
,” Q. Appl. Math.
0033-569X, 47
, pp. 723
–734
.9.
Wu
, K.-C.
, 1998, “Generalization of the Stroh formalism to 3-dimensional anisotropic elasticity
,” J. Elast.
0374-3535, 51
, pp. 213
–225
.10.
Pan
, E.
, and Yuan
, F. G. D.
, 2000, “Three-dimensional Green’s functions in anisotropic bimaterials
,” Int. J. Solids Struct.
0020-7683, 37
, pp. 5329
–5351
.11.
Chaudhury
, M. K.
, Weaver
, T.
, Hui
, C. Y.
, and Kramer
, E. J.
, 1996, “Adhesive contact of cylindrical lens and a flat sheet
,” J. Appl. Phys.
0021-8979, 80
, pp. 30
–37
.12.
13.
Suo
, Z.
, 1990, “Singularities, interfaces and cracks in dissimilar anisotropic media
,” Proc. R. Soc. London, Ser. A
1364-5021, 427
, pp. 331
–358
.14.
Yu
, M.-F.
, Kowalewski
, T.
, and Ruoff
, R. S.
, 2000, “Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force
,” Phys. Rev. Lett.
0031-9007, 85
, pp. 1456
–1459.15.
Yu
, M.-F.
, Kowalewski
, T.
, and Ruoff
, R. S.
, 2001, “Structural analysis of collapsed multiwalled carbon nanotubes by atomic force microscopy
,” Phys. Rev. Lett.
0031-9007, 86
, pp. 87
–90.16.
Hertel
, T.
, Walkup
, R. E.
, and Avouris
, Ph.
, 1998, “Deformation of carbon nanotubes by surface van der Waals forces
,” Phys. Rev. B
0163-1829, 58
, pp. 13870
–13873.17.
Lordi
, V.
, and Yao
, N.
, 1998, “Radial compression and controlled cutting of carbon nanotubes
,” J. Chem. Phys.
0021-9606, 109
, pp. 2509
–2512
.18.
Watson
, G. N.
, 1958, A Treatise on the Theory of Bessel Functions
, 2nd ed., Cambridge University Press
, Cambridge.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.