Abstract

The analysis in part I of this series is extended to the case of inclined and randomly distributed multiwall carbon nanotube (MWCNT) rafts that are brought into contact. The MWCNTs are modeled by elastic and cylindrically anisotropic materials. The JKR theory of adhesion is adopted. With the incorporation of three-dimensional contact configuration that features the inclined contact, we are able to show that the abnormal tribological behavior, in drastic contrast to the classical Amonton’s law, persists for both inclined and randomly oriented rafts.

1.
Yang
,
W.
,
Wang
,
H. T.
, and
Huang
,
Y.
, 2004, “
Abnormal tribological behavior of multiwalled nanotube rafts, Part I: Aligned rafts
,”
J. Eng. Mater. Technol.
0094-4289,
127
(
4
), pp.
383
392
.
2.
Bowden
,
F. P.
, and
Tabor
,
D.
, 1950,
The Friction and Lubrication of Solids
,
Clarendon
, Oxford.
3.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface energy and contact of elastic solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
324
, pp.
301
313
.
4.
Willis
,
J. R.
, 1966, “
Hertzian contact of anisotropic bodies
,”
J. Mech. Phys. Solids
0022-5096,
14
, pp.
163
176
.
5.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1974, “
An image force theorem for dislocations in anisotropic bicrystals
,”
J. Phys. F: Met. Phys.
0305-4608,
4
, pp.
1618
1635
.
6.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1975, “
Line force loading on anisotropic half-spaces and wedges
,”
Phys. Norv.
0031-8930,
8
, pp.
13
22
.
7.
Bacon
,
D. J.
,
Barnett
,
D. M.
, and
Scattergood
,
R. O.
, 1978, “
Anisotropic continuum theory of lattice defects
,”
Prog. Mater. Sci.
0079-6425,
23
, pp.
53
262
.
8.
Dongye
,
C.
, and
Ting
,
T. C. T.
, 1989, “
Explicit expressions of Barnett–Lothe tensors and their associated tensors for orthotropic materials
,”
Q. Appl. Math.
0033-569X,
47
, pp.
723
734
.
9.
Wu
,
K.-C.
, 1998, “
Generalization of the Stroh formalism to 3-dimensional anisotropic elasticity
,”
J. Elast.
0374-3535,
51
, pp.
213
225
.
10.
Pan
,
E.
, and
Yuan
,
F. G. D.
, 2000, “
Three-dimensional Green’s functions in anisotropic bimaterials
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
5329
5351
.
11.
Chaudhury
,
M. K.
,
Weaver
,
T.
,
Hui
,
C. Y.
, and
Kramer
,
E. J.
, 1996, “
Adhesive contact of cylindrical lens and a flat sheet
,”
J. Appl. Phys.
0021-8979,
80
, pp.
30
37
.
12.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge.
13.
Suo
,
Z.
, 1990, “
Singularities, interfaces and cracks in dissimilar anisotropic media
,”
Proc. R. Soc. London, Ser. A
1364-5021,
427
, pp.
331
358
.
14.
Yu
,
M.-F.
,
Kowalewski
,
T.
, and
Ruoff
,
R. S.
, 2000, “
Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
1456
–1459.
15.
Yu
,
M.-F.
,
Kowalewski
,
T.
, and
Ruoff
,
R. S.
, 2001, “
Structural analysis of collapsed multiwalled carbon nanotubes by atomic force microscopy
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
87
–90.
16.
Hertel
,
T.
,
Walkup
,
R. E.
, and
Avouris
,
Ph.
, 1998, “
Deformation of carbon nanotubes by surface van der Waals forces
,”
Phys. Rev. B
0163-1829,
58
, pp.
13870
–13873.
17.
Lordi
,
V.
, and
Yao
,
N.
, 1998, “
Radial compression and controlled cutting of carbon nanotubes
,”
J. Chem. Phys.
0021-9606,
109
, pp.
2509
2512
.
18.
Watson
,
G. N.
, 1958,
A Treatise on the Theory of Bessel Functions
, 2nd ed.,
Cambridge University Press
, Cambridge.
You do not currently have access to this content.