Abstract

Polymeric materials are known to exhibit strong time-dependent mechanical behavior, as evidenced by rate-dependent elastic moduli, yield strength, and post-yield behavior. The nature of the rate sensitivity is found to change between different temperature regimes as various primary (α) and secondary (β, γ, etc.) molecular mobility mechanisms are accessed. The ability to tailor these molecular-level mechanics through the incorporation of nanoscale particles offers new opportunities to design polymer-based material systems with different behaviors (elastic, yield, post-yield) in different frequency∕rate regimes. In this study, the macroscopic rate-dependent mechanical behavior of one particular polymer nanocomposite—polycarbonate compounded with TriSilanolPhenyl-POSS® particles—is compared with that of its homopolymer counterpart. The experimental and theoretical techniques follow those established in previous research into the rate-dependent mechanical behavior of amorphous homopolymers over a wide range of strain rates. On the experimental side, dynamic mechanical analysis tension tests were used to characterize the viscoelastic behavior of these materials, with focus on the rate-dependent shift of material transition temperatures. Uniaxial compression tests on a servohydraulic machine (103s1to0.3s1) and an aluminum split-Hopkinson pressure bar (1000s1to3000s1) were used to characterize the rate-dependent yield and post-yield behavior. The behaviors observed in these experiments were then interpreted within the theoretical framework introduced in previous work. It is concluded that, for this particular material system, the POSS has little influence on the polycarbonate α regime. However, the POSS clearly enhances the mobility of the β motions, significantly reducing the resistance to high rate elastic and plastic deformation. Furthermore, it is shown that the continuum-level constitutive model framework developed for amorphous homopolymers may be extended to this polymer nanocomposite material system, simply by accounting for the reduced deformation resistance in the β process.

1.
Roetling
,
J. A.
, 1965, “
Yield Stress Behavior of Polymethylmethacrylate
,”
Polymer
0032-3861,
6
, pp.
311
317
.
2.
Roetling
,
J. A.
, 1965, “
Yield Stress Behavior of Poly(ethyl methacrylate) in the Glass Transition Region
,”
Polymer
0032-3861,
6
, pp.
615
619
.
3.
Bauwens-Crowet
,
C.
, and
Homès
,
G.
, 1964, “
La Dèformation Plastique du Polymèthacrylate de Mèthyle Dans le Domaine Vitreux
,”
Acad. Sci., Paris, C. R.
0001-4036,
259
, pp.
3434
3436
.
4.
Bauwens-Crowet
,
C.
,
Bauwens
,
J. C.
, and
Homès
,
G.
, 1969, “
Tensile Yield-Stress Behavior of Glassy Polymers
,”
J. Polym. Sci., Part A-2
0098-1273,
7
, pp.
735
742
.
5.
Bauwens
,
J. C.
,
Bauwens-Crowet
,
C.
, and
Homès
,
G.
, 1969, “
Tensile Yield-Stress Behavior of Poly(vinyl Chloride) and Polycarbonate in the Glass Transition Region
,”
J. Polym. Sci., Part A-2
0098-1273,
7
, pp.
1745
1754
.
6.
Bauwens-Crowet
,
C.
,
Bauwens
,
J. C.
, and
Homès
,
G.
, 1972, “
The Temperature Dependence of Yield of Polycarbonate in Uniaxial Compression and Tensile Tests
,”
J. Mater. Sci.
0022-2461,
7
, pp.
176
183
.
7.
Ree
,
T.
, and
Eyring
,
H.
, 1955, “
Theory for Non-Newtonian Flow I. Solid Plastic System
,”
J. Appl. Phys.
0021-8979,
26
, pp.
793
.
8.
Bauwens
,
J. C.
, 1972, “
Relation Between the Compression Yield Stress and the Mechanical Loss Peak of Bisphenol-A-Polycarbonate in the β Transition Range
,”
J. Mater. Sci.
0022-2461,
7
, pp.
577
584
.
9.
Bauwens-Crowet
,
C.
, 1973, “
The Compression Yield Behaviour of Polymethyl Methacrylate Over a Wide Range of Temperature and Strain-Rates
,”
J. Mater. Sci.
0022-2461,
8
, pp.
968
979
.
10.
Rietsch
,
F.
, and
Bouette
,
B.
, 1990, “
The Compression Yield Behavior of Polycarbonate Over a Wide Range of Strain Rates and Temperatures
,”
Eur. Polym. J.
0014-3057,
10
, pp.
1071
1075
.
11.
Walley
,
S. M.
, and
Field
,
J. E.
, 1994, “
Strain Rate Sensitivity of Polymers in Compression From Low to High Rates
,”
DYMAT J.
,
1
, pp.
211
227
.
12.
Moy
,
P.
,
Weerasooriya
,
T.
,
Hsieh
,
A.
, and
Chen
,
W.
, 2003, “
Strain Rate Response of a Polycarbonate Under Uniaxial Compression
,”
Proceedings of the SEM Conference on Experimental Mechanics
, June 2–4,
Charlotte
, NC,
Society for Experimental Mechanics, Inc.
,
Bethel, CT
.
13.
Cady
,
C. M.
,
Blumenthal
,
W. R.
,
Gray
,
G. T.
, and
Idar
,
D. J.
, 2003, “
Determing the Constitutive Response of Polymeric Materials as a Function of Temperature and Strain Rate
,”
J. Phys. IV
1155-4339,
110
, pp.
27
32
.
14.
Haussy
,
J.
,
Cavrot
,
J. P.
,
Escaig
,
B.
, and
Lefebvre
,
J. M.
, 1980, “
Thermodynamic Analysis of the Plastic Deformation of Glassy Poly(methyl methacrylate)
,”
J. Polym. Sci., Polym. Phys. Ed.
0098-1273,
18
, pp.
311
325
.
15.
Foot
,
J. S.
,
Truss
,
R. W.
,
Ward
,
I. M.
, and
Duckett
,
R. A.
, 1987, “
The Yield Behavior of Amorphous Polyethylene Terephthalate: An Activated Rate Theory Approach
,”
J. Mater. Sci.
0022-2461,
22
, pp.
1437
1442
.
16.
Steer
,
P.
, and
Rietsch
,
F.
, 1988, “
Viscoplasticitè du Polycarbonate aux Vitesses de Sollicitations Èlevèes
,”
Eur. Polym. J.
0014-3057,
1
, pp.
7
11
.
17.
Dionísio
,
M.
,
Alves
,
N.
, and
Mano
,
J.
, 2004, “
Molecular Dynamics in Polymeric Systems
,”
e-Polymers
1618-7229,
4
(
1
), pp.
044
.
18.
Hutchinson
,
J. M.
, 1997, “
Relaxation Processes and Physical Aging
,”
The Physics of Glassy Polymers
, 2nd ed.,
Chapman and Hall
,
London
, pp.
128
138
.
19.
Diaz-Calleja
,
R.
,
Gargallo
,
L.
, and
Radic
,
D.
, 1995, “
Relaxations in Poly(di-n-alkyl and Diisoalkyl Itaconates)
,”
Macromolecules
0024-9297,
28
, pp.
6963
6969
.
20.
Belana
,
J.
,
Canadas
,
J. C.
,
Diego
,
J. A.
,
Mudarra
,
M.
,
Diaz-Calleja
,
R.
,
Friederichs
,
S.
,
Jaimes
,
C.
, and
Sanchis
,
M. J.
, 1998, “
Comparative Study of Mechanical and Electrical Relaxations in Poly(etherimide). Part 1.
,”
Polym. Int.
0959-8103,
46
, pp.
11
19
.
21.
Floudas
,
G.
,
Higgins
,
J. S.
,
Meier
,
J. S.
,
Kremer
,
F.
, and
Fischer
,
E. W.
, 1993, “
Dynamics of Bisphenol-A Polycarbonate in the Glassy and Rubbery States as Studied by Neutron Scattering and Complementary Techniques
,”
Macromolecules
0024-9297,
26
, pp.
1676
1682
.
22.
Vaia
,
R. A.
, and
Giannelis
,
E. P.
, 2001, “
Polymer Nanocomposites: Status and Opportunities
,”
MRS Bull.
0883-7694,
26
, pp.
394
401
.
23.
Li
,
G.
,
Wang
,
L.
,
Hanli
,
N.
, and
Pittman
,
C. U.
, 2001, “
Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A Review
,”
J. Inorg. Organomet. Polym.
1053-0495,
11
, pp.
123
154
.
24.
Haddad
,
T. S.
,
Tomczak
,
S. J.
, and
Phillips
,
S. H.
, 2004, “
Developments in Nanoscience: Polyhedral Oligomeric Silsesquioxane (POSS)-polymers
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
8
, pp.
21
29
.
25.
Fu
,
B. X.
,
Hsiao
,
B.
,
Pagola
,
S.
,
Stephens
,
P.
,
White
,
H.
,
Rafailovich
,
M.
,
Sokolov
,
J.
,
Mather
,
P. T.
,
Jeon
,
H. G.
,
Phillips
,
S.
,
Lichtenhan
,
J.
, and
Schwab
,
J.
, 2001, “
Structural Developmen During Deformation of Polyurethane Containing Polyhedral Oligomeric Silisesquioxane (POSS) Molecules
,”
Polymer
0032-3861,
42
, pp.
599
611
.
26.
Liu
,
H.
, and
Zheng
,
S.
, 2005, “
Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxanes
,”
Macromol. Rapid Commun.
1022-1336,
26
, pp.
196
200
.
27.
Yoon
,
K. H.
,
Polk
,
M. B.
,
Park
,
J. H.
,
Min
,
B. G.
, and
Schiraldi
,
D. A.
, 2005, “
Properties of Poly(ethylene terephthalate) Containing Epoxy-Functionalized Polyhedral Oligomeric Silsesquioxanes
,”
Polym. Int.
0959-8103,
54
, pp.
47
53
.
28.
Zhang
,
W. H.
,
Fu
,
B. X.
,
Seo
,
Y.
,
Schrag
,
E.
,
Hsiao
,
B.
,
Mather
,
P. T.
,
Yang
,
N. L.
,
Xu
,
D. Y.
,
Ade
,
H.
,
Rafailovich
,
M.
, and
Sokolov
,
J.
, 2002, “
Effect of Methyl Methacrylate∕Polyhedral Oligomeric Silsesquioxane Random Copolymers in Compatibilization of Polystyrene and Poly(methyl methacrylate) Blends
,”
Macromolecules
0024-9297,
35
, pp.
8029
8038
.
29.
Kopesky
,
E. T.
,
Haddad
,
T. S.
,
Cohen
,
R. E.
, and
McKinley
,
G. H.
, 2004, “
Thermomechanical Properties of Poly(methyl methacrylate)s Containing Tethered and Unthethered Polyhedral Oligomeric Silsesquioxanes
,”
Macromolecules
0024-9297,
37
, pp.
8992
9004
.
30.
Kopesky
,
E. T.
, 2005, “
Thermomechanical Properties of Polyhedral Oligomeric Silsesquioxane-Poly(methyl methacrylate) Nanocomposites
,” Ph.D. thesis, Massachusetts Institute of Technology.
31.
Capaldi
,
F. M.
, 2005, “
Atomistic Simulations of Octacyclopentyl Polyhedral Oligomeric Silsesquioxane Polyethylene Nanocomposites
,” Ph.D. thesis, Massachusetts Institute of Technology.
32.
Capaldi
,
F. M.
,
Rutledge
,
G. C.
, and
Boyce
,
M. C.
, 2005, “
Structure and Dynamics of Blends of Polyhedral Oligomeric Silsesquioxanes and Polyethylene by Atomistic Simulation
,”
Macromolecules
0024-9297,
38
, pp.
6700
6709
.
33.
Mulliken
,
A. D.
, and
Boyce
,
M. C.
, 2006, “
Mechanics of the Rate-Dependent Elastic-Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
1331
1356
.
34.
Mulliken
,
A. D.
, and
Boyce
,
M. C.
, 2004, “
Low to High Strain Rate Deformation of Amorphous Polymers
,”
Proceedings of the 2004 SEM X International Congress and Exposition on Experimental and Applied Mechanics
, June 7–10, Costa Mesa, CA,
Society for Experimental Mechanics, Inc.
,
Bethel, CT
, Paper No 197.
35.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
, 1988, “
Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
0167-6636,
7
, pp.
15
33
.
36.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
Evolution of Plastic Anisotropy in Amorphous Polymers During Finite Straining
,”
Int. J. Plast.
0749-6419,
9
, pp.
697
720
.
37.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
, 1998, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
931
954
.
38.
Haward
,
R. N.
, and
Thackray
,
G.
, 1968, “
The Use of a Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics
,”
Proc. R. Soc. London, Ser. A
1364-5021,
302
, pp.
453
472
.
39.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
A Three-Dimensional Constitutive Model of the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
389
412
.
40.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
, 1995, “
Effects of Strain Rate, Temperature, and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
0167-6636,
19
, pp.
193
212
.
41.
Gray
,
G. T.
, 2000, “
Classic Split-Hopkinson Bar Testing
,”
ASM Handbook
, 12th ed.,
American Society for Metals
,
Materials Park, OH
, Vol.
8
, pp.
462
476
.
42.
Gray
,
G. T.
, and
Blumenthal
,
W. R.
, 2000, “
Split-Hopkinson Pressure Bar Testing of Soft Materials
,”
ASM Handbook
, 12th ed.,
American Society for Metals
,
Materials Park, OH
, Vol.
8
.
You do not currently have access to this content.