Mechanism-based models for the evolution of defects during the thermomechanical processing of aerospace titanium- and nickel-based alloys are reviewed. These defects include those comprising microstructural/metal-flow irregularities and those that are damage related (i.e., cracks and cavities). The development of undesirable/nonuniform microstructures and cavities during the mill processing of alpha/beta titanium alloys is addressed first. Relatively simple, diffusion-based models of spheroidization and coarsening are applied to quantify the propensity for microstructure nonuniformities. Similarly, first-order micromechanical models have been formulated to estimate the effect of local crystallographic texture on nonuniform flow, the generation of triaxial stresses, and cavity growth/closure in alpha/beta titanium alloys with a colony-alpha microstructure. The occurrence of nonuniform grain structures (and so-called ALA, or “as large as,” grains) in cast, wrought, and powder-metallurgy superalloys is also discussed. A physics-based model to treat the topology of recrystallization and the evolution of ALA grains in such materials is proposed.

1.
Semiatin
,
S. L.
, 1997, “
Hot Working of Titanium Alloys: An Overview
,” in
Advances in the Science and Technology of Titanium Alloy Processing
,
I.
Weiss
,
R.
Srinivasan
,
P. J.
Bania
,
D.
Eylon
, and
S. L.
Semiatin
, eds.,
TMS
,
Warrendale, PA
, pp.
3
73
.
2.
Donachie
,
M. J.
, and
Donachie
,
S. J.
, 2002,
Superalloys: A Technical Guide
,
ASM International
,
Materials Park, OH
, Chap. 4.
3.
Wilson
,
A. F.
,
Jardy
,
A.
,
Hamel
,
J.
,
Fox
,
S. P.
, and
Ablitzer
,
D.
, 2004, “
Implementation and Utilization of a Mathematical Model to Simulate VAR of Titanium Alloys
,” in
Ti-2003: Science and Technology
,
G.
Luetjering
and
J.
Albrecht
, eds.,
Wiley-VCH
,
New York
, pp.
149
156
.
4.
Mitchell
,
A.
, 1997, “
Melting, Casting, and Forging Problems in Titanium Alloys
,”
JOM
1047-4838,
49
(
6
), pp.
40
42
.
5.
Semiatin
,
S. L.
, 2003, “
Workability in Forging
,”
Handbook of Workability and Process Design
,
G. E.
Dieter
,
H. A.
Kuhn
, and
S. L.
Semiatin
, eds.,
ASM International
,
Materials Park, OH
, pp.
188
207
.
6.
Woodfield
,
A. P.
,
Gorman
,
M. D.
,
Corderman
,
R. R.
,
Sutliff
,
J. A.
, and
Yamron
,
B.
, 1996, “
Effect of Microstructure on Dwell Fatigue Behavior of Ti–6242
,” in
Titanium ’95: Science and Technology
,
P. A.
Blenkinsop
,
W. J.
Evans
, and
H. M.
Flower
, eds.,
Institute of Metals
,
London
, pp.
1116
1123
.
7.
Ivasishin
,
O. M.
,
Semiatin
,
S. L.
,
Markovsky
,
P. E.
,
Shevchenko
,
S. V.
, and
Ulshin
,
S. V.
, 2002, “
Grain Growth and Texture Evolution in Ti–6Al–4V During Beta Annealing Under Continuous Heating Conditions
,”
Mater. Sci. Eng., A
0921-5093,
A337
, pp.
88
96
.
8.
Forbes Jones
,
R. M.
, and
Jackman
,
L. A.
, 1999, “
The Structural Evolution of Superalloy Ingots During Hot Working
,”
JOM
1047-4838,
51
(
1
), pp.
27
31
.
9.
Minisandram
,
R. S.
,
Jackman
,
L. A.
,
Adasczik
,
C. B.
, and
Shivpuri
,
R.
, 1997, “
Thermal Cracking of Large-Diameter 706 Ingots
,” in
Superalloys, 718, 625 706 and Various Derivatives
,
E. A.
Loria
, ed.,
TMS
,
Warrendale, PA
, pp.
131
139
.
10.
Weiss
,
I.
,
Welsch
,
G. E.
,
Froes
,
F. H.
, and
Eylon
,
D.
, 1985, “
Mechanisms of Microstructure Refinement in Ti–6Al–4V
,” in
Titanium: Science and Technology
,
G.
Luetjering
,
U.
Zwicker
, and
W.
Bunk
, eds.,
Deutsche Gesellschaft fur Metallkunde e.V.
,
Oberursel, Germany
, pp.
1503
1510
.
11.
Shell
,
E. B.
, and
Semiatin
,
S. L.
, 1999, “
Effect of Initial Microstructure on Plastic Flow and Dynamic Globularization During Hot Working of Ti–6Al–4V
,”
Metall. Mater. Trans. A
1073-5623,
30A
, pp.
3219
3229
.
12.
Stefansson
,
N.
, and
Semiatin
,
S. L.
, 2003, “
Mechanisms of Globularization of Ti–6Al–4V During Static Heat Treatment
,”
Metall. Mater. Trans. A
1073-5623,
34A
, pp.
691
698
.
13.
Stefansson
,
N.
,
Semiatin
,
S. L.
, and
Eylon
,
D.
, 2002, “
The Kinetics of Static Globularization of Ti–6Al–4V
,”
Metall. Mater. Trans. A
1073-5623,
33A
, pp.
3527
3534
.
14.
Semiatin
,
S. L.
,
Stefansson
,
N.
, and
Doherty
,
R. D.
, 2005, “
Prediction of the Kinetics of Static Globularization of Ti–6Al–4V
,”
Metall. Mater. Trans. A
1073-5623,
36A
, pp.
1372
1376
.
15.
Semiatin
,
S. L.
,
Kirby
,
B. C.
, and
Salishchev
,
G. A.
, 2004, “
Coarsening Behavior of an Alpha-Beta Titanium Alloy
,”
Metall. Mater. Trans. A
1073-5623,
35A
, pp.
2809
2819
.
16.
Courtney
,
T. H.
, and
Malzahn Kampe
,
J. C.
, 1989, “
Shape Instabilities of Plate-Like Structures. II. Analysis
,”
Acta Metall.
0001-6160,
37
, pp.
1747
1758
.
17.
Voorhees
,
P. W.
, and
Glicksman
,
M. E.
, 1984, “
Solution to the Multiparticle Diffusion Problem With Applications to Ostwald Ripening. I. Theory
,”
Acta Metall.
0001-6160,
32
, pp.
2001
2011
.
18.
Calderon
,
H. A.
,
Voorhees
,
P. W.
,
Murray
,
J. L.
, and
Kostorz
,
G.
, 1994, “
Ostwald Ripening in Concentrated Alloys
,”
Acta Metall. Mater.
0956-7151,
42
, pp.
991
1000
.
19.
Needleman
,
A.
, and
Rice
,
J. R.
, 1980, “
Plastic Creep Flow Effects in the Diffusive Cavitation of Grain Boundaries
,”
Acta Metall.
0001-6160,
28
, pp.
1315
1332
.
20.
Stowell
,
M. J.
, 1982, “
Cavitation in Superplasticity
,” in
Superplastic Forming of Structural Alloys
,
N. E.
Paton
and
C. H.
Hamilton
, eds.,
TMS
,
Warrendale, PA
, pp.
321
336
.
21.
Chokshi
,
A.
, and
Mukherjee
,
A. K.
, 1989, “
An Analysis of Cavity Nucleation in Superplasticity
,”
Acta Metall.
0001-6160,
37
, pp.
3007
3017
.
22.
Ghosh
,
A. K.
,
Bae
,
D.-H.
, and
Semiatin
,
S. L.
, 1999, “
Initiation and Early Stages of Cavity Growth During Superplastic and Hot Deformation
,”
Mater. Sci. Forum
0255-5476,
304–306
, pp.
609
616
.
23.
Hancock
,
J. W.
, 1976, “
Creep Cavitation Without a Vacancy Flux
,”
Met. Sci.
0306-3453,
10
, pp.
319
325
.
24.
Nicolaou
,
P. D.
, and
Semiatin
,
S. L.
, 1999, “
Modeling of Cavity Coalescence During Tensile Deformation
,”
Acta Mater.
1359-6454,
47
, pp.
3679
3686
.
25.
Nicolaou
,
P. D.
, and
Semiatin
,
S. L.
, 2000, “
An Analysis of the Effect of Continuous Nucleation and Coalescence on Cavitation During Hot Tension Testing
,”
Acta Mater.
1359-6454,
48
, pp.
3441
3450
.
26.
Nicolaou
,
P. D.
, and
Semiatin
,
S. L.
, 2005, “
An Analysis of Cavity Growth During Open-Die Hot Forging of Ti–6Al–4V
,”
Metall. Mater. Trans. A
1073-5623,
36A
, pp.
1567
1574
.
27.
Nicolaou
,
P. D.
, and
Semiatin
,
S. L.
, 2003, “
An Experimental and Theoretical Investigation of the Influence of Stress State on Cavitation During Hot Working
,”
Acta Mater.
1359-6454,
51
, pp.
613
623
.
28.
Nicolaou
,
P. D.
,
Goetz
,
R. L.
, and
Semiatin
,
S. L.
, 2004, “
Influence of Stress State on Cavitation During Hot Working of Ti–6Al–4V
,”
Metall. Mater. Trans. A
1073-5623,
35A
, pp.
655
663
.
29.
Nicolaou
,
P. D.
,
Miller
,
J. D.
, and
Semiatin
,
S. L.
, 2005, “
Cavitation During Hot Torsion Testing of Ti–6Al–4V
,”
Metall. Mater. Trans. A
1073-5623,
36A
, pp.
3461
3470
.
30.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 1969, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
201
217
.
31.
Pilling
,
J.
, and
Ridley
,
N.
, 1986, “
Effect of Hydrostatic Pressure on Cavitation in Superplastic Aluminum Alloys
,”
Acta Metall.
0001-6160,
34
, pp.
669
679
.
32.
Bieler
,
T. R.
,
Nicolaou
,
P. D.
, and
Semiatin
,
S. L.
, 2005, “
An Experimental and Theoretical Investigation of the Effect of Colony Orientation and Misorientation on Cavitation During Hot Working of Ti–6Al–4V
,”
Metall. Mater. Trans. A
1073-5623,
36A
, pp.
129
140
.
33.
Semiatin
,
S. L.
, and
Bieler
,
T. R.
, 2001, “
Effect of Texture and Slip Mode on the Anisotropy of Plastic Flow and Flow Softening During Hot Working of Ti–6Al–4V
,”
Metall. Mater. Trans. A
1073-5623,
32A
, pp.
1787
1799
.
34.
Semiatin
,
S. L.
,
Montheillet
,
F.
,
Shen
,
G.
, and
Jonas
,
J. J.
, 2002, “
Self-Consistent Modeling of the Flow Behavior of Wrought Alpha/Beta Titanium Alloys Under Isothermal and Nonisothermal Hot-Working Conditions
,”
Metall. Mater. Trans. A
1073-5623,
33A
, pp.
2719
2727
.
35.
Turner
,
T. J.
, and
Semiatin
,
S. L.
, 2004, “
A Crystal-Plasticity Model for the Flow Behavior of Two-Phase Alloy Systems
,” in
Numiform 2004
,
S.
Ghosh
,
J. M.
Castro
, and
J. K.
Lee
, eds.,
American Institute of Physics
,
College Park, MD
, pp.
1792
1797
.
36.
Nicolaou
,
P. D.
, and
Semiatin
,
S. L.
, 2006, “
The Effect of Strain-Path Reversal on Cavitation During Hot Torsion of Ti–6Al–4V
,”
Metall. Mater. Trans. A
1073-5623,
37A
, pp.
3697
3705
.
37.
Nicolaou
,
P. D.
, and
Semiatin
,
S. L.
, 2008, “
Effect of Stress and Strain Path on Cavity Closure During Hot Working of an Alpha/Beta Titanium Alloy
,”
Metall. Mater. Trans. A
1073-5623, in press.
38.
Dutton
,
R. E.
,
Shamasundar
,
S.
, and
Semiatin
,
S. L.
, 1995, “
Modeling the Hot Consolidation of Ceramic and Metal Powders
,”
Metall. Mater. Trans. A
1073-5623,
26A
, pp.
2041
2052
.
39.
Montheillet
,
F.
, 1999, “
Modeling of the Steady State Regime of Discontinuous Recrystallization
,” in
Rex ’99
,
T.
Sakai
and
H. G.
Suzuki
, eds.,
Japan Institute of Metals
,
Sendai, Japan
, pp.
651
658
.
40.
Thomas
,
J. P.
, and
Semiatin
,
S. L.
, 2006, “
Mesoscale Modeling of the Recrystallization of Waspaloy and Application to the Simulation of the Ingot-Cogging Process
,” in
Proceedings, Materials Science and Technology (MS&T) 2006: Processing
,
TMS
,
Warrendale, PA
, pp.
609
619
.
41.
Thomas
,
J. P.
,
Montheillet
,
F.
, and
Semiatin
,
S. L.
, 2007, “
A Geometric Framework for Meso-Scale Models of Recrystallization
,”
Metall. Mater. Trans. A
1073-5623,
38A
, pp.
2095
2109
.
42.
Semiatin
,
S. L.
,
Weaver
,
D. S.
,
Fagin
,
P. N.
,
Glavicic
,
M. G.
,
Goetz
,
R. L.
,
Frey
,
N. D.
,
Kramb
,
R. C.
, and
Antony
,
M. M.
, 2004, “
Deformation and Recrystallization Behavior During Hot Working of a Coarse-Grain, Nickel-Base Superalloy Ingot Material
,”
Metall. Mater. Trans. A
1073-5623,
35A
, pp.
679
693
.
You do not currently have access to this content.