Strain localization in the presence of a stress gradient is a phenomenon common to many systems described by continuum mechanics. Variations of this complex phenomenon lead to interesting nonlinear effects in materials/engineering science as well as in other fields. Here, the synchrotron based energy dispersive x-ray diffraction (EDXRD) technique is used for high spatial resolution profiling of both compression and tension induced strain localization in important materials/engineering problems. Specifically, compression induced strain localization in shot peened materials and tension induced strain localization in the plastic zones adjoining the faces of a fatigue crack are profiled. The utility of the EDXRD synchrotron technique for nondestructively cross-sectioning strain variations on small length scales (down to 1020μm) is described. While the strain field profiling relies on the shift of the Bragg lines, the data show that plastic deformation regions can also consistently be seen in the broadening of the Bragg peaks through the full width at half maximum parameter. Quantitative correlations between the synchrotron based x-ray determined deformations and surface deformations, as measured by optical surface height profiling, are also made.

1.
Sharon
,
E.
,
Marder
,
M.
, and
Swinney
,
H.
, 2004, “
Geometry and Elasticity of Strips and Flowers
,”
Am. Sci.
0003-0996,
92
, pp.
254
261
.
2.
Audoly
,
B.
, and
Boudaoud
,
A.
, 2003, “
Self-Similar Structures Near Boundaries in Strained Systems
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
086105
.
3.
England
,
P.
, and
Molnar
,
P.
, 1997, “
Active Deformation of Asia: From Kinematics to Dynamics
,”
Science
0036-8075,
278
, pp.
647
650
.
4.
Qin
,
R.
, and
Buck
,
W.
, 2005, “
Effect of Lithospheric Geometry on Rift Valley Relief
,”
J. Geophys. Res.
0148-0227,
110
, p.
B03404
.
5.
Croft
,
M.
,
Zakharchenko
,
I.
,
Zhong
,
Z.
,
Gulak
,
Y.
,
Hastings
,
J.
,
Hu
,
J.
,
Holtz
,
R.
,
DaSilva
,
M.
, and
Tsakalakos
,
T.
, 2002, “
Strain Field and Scattered Intensity Profiling With Energy Dispersive X-Ray Scattering
,”
J. Appl. Phys.
0021-8979,
92
, pp.
578
586
, and references therein.
6.
Croft
,
M.
,
Zhong
,
Z.
,
Jisrawi
,
N.
,
Zakharchenko
,
I.
,
Holtz
,
R.
,
Gulak
,
Y.
,
Skaritka
,
J.
,
Fast
,
T.
,
Sadananda
,
K.
,
Lakshmipathy
,
M.
, and
Tsakalakos
,
T.
, 2005, “
Strain Profiling of Fatigue Crack Overload Effects Using Energy Dispersive X-Ray Diffraction
,”
Int. J. Fatigue
0142-1123,
27
, pp.
1408
1419
, and references therein.
7.
Croft
,
M.
,
Jisrawi
,
N.
,
Zhong
,
Z.
,
Holtz
,
R.
,
Sadananda
,
K.
,
Skaritka
,
J.
, and
Tsakalakos
,
T.
, 2007, “
Fatigue History and In-Situ Loading Studies of the Overload Effect Using High Resolution X-Ray Strain Profiling
,”
Int. J. Fatigue
0142-1123,
29
(
9–11
), pp.
1726
1736
.
8.
Steuwer
,
A.
,
Santistebban
,
J.
,
Turski
,
M.
,
Withers
,
P.
, and
Buslap
,
T.
, 2004, “
High-Resolution Strain Mapping in Bulk Samples Using Full-Profile Analysis of Energy-Dispersive Synchrotron X-Ray Diffraction Data
,”
J. Appl. Crystallogr.
0021-8898,
37
, pp.
883
889
.
9.
Steuwer
,
A.
,
Santisteban
,
J.
,
Turski
,
M.
,
Withers
,
P.
, and
Buslaps
,
T.
, 2005, “
High-Resolution Strain Mapping in Bulk Samples Using Full-Profile Analysis of Energy Dispersive Synchrotron X-Ray Diffraction Data
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
238
(
1–4
), pp.
200
204
.
10.
Korsunsky
,
A.
,
Collins
,
S.
,
Owen
,
R.
,
Daymond
,
M.
,
Achtioui
,
S.
, and
James
,
K.
, 2002, “
Fast Residual Stress Mapping Using Energy-Dispersive Synchrotron X-Ray Diffraction on Station 16.3 at the SRS
,”
J. Synchrotron Radiat.
0909-0495,
9
, pp.
77
81
.
11.
James
,
M.
,
Hattingh
,
D.
,
Hughes
,
D.
,
Wei
,
L.-W.
,
Patterson
,
E.
,
Quinta Da Fonseca
,
J.
, 2004, “
Synchrotron Diffraction Investigation of the Distribution and Influence of Residual Stresses in Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
27
, pp.
609
622
.
12.
Jones
,
J.
,
Motahari
,
S.
,
Varlioglu
,
M.
,
Lienert
,
U.
,
Bernier
,
J.
,
Hoffman
,
M.
, and
Ustundag
,
E.
, 2007, “
Crack Tip Process Zone Domain Switching in a Soft Lead Zirconate Titanate Ceramic
,”
Acta Mater.
1359-6454,
55
, pp.
5538
5548
.
13.
Martins
,
R.
,
Lienert
,
U.
,
Margulies
,
L.
, and
Pyzalla
,
A.
, 2005, “
Determination of the Radial Crystallite Microstrain Distribution Within an AlMg3 Torsion Sample Using Monochromatic Synchrotron Radiation
,”
Mater. Sci. Eng., A
0921-5093,
402
, pp.
278
287
.
14.
Haeffner
,
D.
,
Almer
,
J.
, and
Lienert
,
U.
, 2005, “
The Use of High Energy X-Rays From the Advanced Photon Source to Study Stresses in Materials
,”
Mater. Sci. Eng., A
0921-5093,
399
, pp.
120
127
.
15.
Margulies
,
L.
,
Lorentzen
,
T.
,
Poulsen
,
H.
, and
Leffers
,
T.
, 2002, “
Strain Tensor Development in a single grain in the bulk of a Polycrystal Under Loading
,”
Acta Mater.
1359-6454,
50
, pp.
1771
1779
.
16.
Martins
,
R.
,
Margulies
,
L.
,
Schmidt
,
S.
,
Poulsen
,
H.
, and
Leffers
,
T.
, 2004, “
Simultaneous Measurement of the Strain Tensor of 10 Individual Grains Embedded in an Al Tensile Sample
,”
Mater. Sci. Eng., A
0921-5093
387–389
, pp.
84
88
.
17.
Behnken
,
H.
, 2000, “
Strain-Function Method for the Direct Evaluation of Intergranular Strains and Stresses
,”
Phys. Status Solidi A
0031-8965
177
, pp.
401
418
.
18.
Wang
,
Y.
,
Lin-Peng
,
R.
, and
McGreevy
,
R.
, 2001, “
A Novel Method for Constructing the Mean Field of Grain-Orientation-Dependent Residual Stress
,”
Philos. Mag. Lett.
0950-0839,
81
(
3
), pp.
153
163
.
19.
Bernier
,
J.
, and
Miller
,
M.
, 2006, “
A Direct Method for the Determination of the Mean Orientation-Dependent Elastic Strains and Stresses in Polycrystalline Materials From Strain Pole Figures
,”
J. Appl. Crystallogr.
0021-8898,
39
(
3
), pp.
358
368
.
20.
Miller
,
M.
,
Bernier
,
J.
,
Park
,
J.
, and
Kazimirov
,
A.
, 2005, “
Experimental Measurement of Lattice Strain Pole Figures Using Synchrotron X-rays
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
113903
.
21.
Han
,
T.
, and
Dawson
,
P.
, 2005, “
Lattice Strain Partitioning in a Two-Phase Alloy and Its Redistribution Upon Yielding
,”
Mater. Sci. Eng., A
0921-5093,
405
, pp.
18
33
.
22.
Barton
,
N.
, and
Dawson
,
P.
, 2001, “
On the Spatial Arrangement of Lattice Orientations in Hot-Rolled Multiphase Titanium
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
9
, pp.
433
463
.
23.
see,
Hertzberg
,
R.
, 1983,
Deformation and Fracture Mechanics of Engineering Materials
,
Wiley
,
New York
, Chap. 1.
24.
Gerward
,
L.
,
Morup
,
S.
, and
Topsoe
,
H.
, 1976, “
Particle Size and Strain Broadening in Energy-Dispersive X-Ray Powder Patterns
,”
J. Appl. Phys.
0021-8979,
47
, pp.
822
825
.
25.
Otto
,
J. W.
, 1997, “
On the Peak Profiles in Energy-Dispersive Powder X-ray Diffraction with Synchrotron Radiation
,”
J. Appl. Crystallogr.
0021-8898,
30
, pp.
1008
1015
.
26.
Ellmer
,
K.
,
Mientus
,
R.
,
Weiss
,
V.
, and
Rossner
,
H.
, 2003, “
In Situ Energy-Dispersive X-Ray Diffraction System for Time-Resolved Thin-Film Growth Studies
,”
Meas. Sci. Technol.
0957-0233,
14
, pp.
336
345
.
27.
Brunoy
,
G.
, and
Dunnz
,
B.
, 1997, “
The Precise Measurement of Ti6A14V Microscopic Elastic Constants by Means of Neutron Diffraction
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1244
1249
.
28.
Deck
,
L.
, and
de Groot
,
P.
, 1994, “
High-Speed Noncontact Profiler Based on Scanning White-Light Interferometry
,”
Appl. Opt.
0003-6935,
33
, pp.
7334
7338
.
29.
Leghorn
,
G.
, 1957, “
The Story Of Shot Peening
,”
J. Am. Soc. Nav. Eng.
0099-7056, p.
654
.
30.
Wohlfahrt
,
H.
, 1984, “
The Influence of Peening Conditions on the Resulting Distribution of the Residual Stress
,”
Proceedings of the Second International Conference on Shot Peening
Chicago
, Paper No. 511984, pp.
316
331
.
31.
Al-Hassani
,
S.
, 1981, “
Mechanical Aspects of Residual Stress Development in Shot Peening
,”
First International Conference on Shot Peening-1
,
Paris
, pp.
593
.
32.
Evans
,
R.
, 2002, “
Shot Peening Process: Modelling, Verification, and Optimisation
,”
Mater. Sci. Technol.
0267-0836
18
, pp.
831
839
.
33.
See the review by
Prime
,
M.
, 1999, “
Residual Stress Measurement by Successive Extension of a Slot: The Crack Compliance Method
,”
Appl. Mech. Rev.
0003-6900,
52
, pp.
75
96
.
34.
See the review by
Withers
,
P.
, and
Bhadeshia
,
H.
, 2001, “
Residual Stress. I-Measurement Techniques
,”
Mater. Sci. Technol.
0267-0836
17
, pp.
355
365
and references therein.
35.
see
Zhuang
,
W.
and
Wicks
,
B.
, 2003, “
Mechanical Surface Treatment Technologies for Gas Turbine Engine Components
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
1021
1025
, and references therein.
36.
Wang
,
Y. M.
,
Wang
,
K.
,
Pan
,
D.
,
Lu
,
K.
,
Hemker
,
K.
, and
Ma
,
E.
, 2003, “
Microsample Tensile Testing of Nanocrystalline Copper
,”
Scr. Mater.
1359-6462,
48
, pp.
1581
1586
.
37.
Zhang
,
X. N.
,
Zhang
,
B. H.
,
Zhao
,
C. L.
,
Tao
,
N. R.
, and
Wang
,
Y. M.
, 2007, unpublished.
38.
Xinling
,
M.
,
Wei
,
W.
, and
Wei
,
Y.
, 2003, “
Simulation for Surface Self-Nanocrystallization Under Shot Peening
,”
Acta Mech. Sin.
0459-1879,
19
, pp.
1614
3116
.
39.
unpublished.
40.
Suresh
,
S.
, 1991,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge
, Chap. 5 and references therein.
41.
see
Sadananda
,
K.
,
Vasudevan
,
A. K.
,
Holtz
,
R. L.
, and
Lee
,
E. U.
, 1999, “
Analysis of Overload Effects and Related Phenomena
,”
Int. J. Fatigue
0142-1123,
21
, pp.
S233
S246
, and references therein.
You do not currently have access to this content.