Thermoplastics such as ultrahigh molecular weight polyethylene (UHMWPE) are used for a wide variety of applications, such as bearing material in total replacement of knee and hip components, seals, gears, and unlubricated bearing. Accurate prediction of stresses and deformations of UHMWPE components under service conditions is essential for the design and analysis of these components. This, in turn, requires a cyclic, viscoplastic constitutive model that can simulate cyclic responses of UHMWPE under a wide variety of uniaxial and multiaxial, strain, and stress-controlled cyclic loading. Such a constitutive model validated against a broad set of experimental responses is not available mainly because of the lack of experimental data of UHMWPE. Toward achieving such a model, this study conducted a systematic set of uniaxial experiments on UHMWPE thin-walled, tubular specimens by prescribing strain and stress-controlled cyclic loading. The tubular specimen was designed so that both uniaxial and biaxial experiments can be conducted using one type of specimen. The experimental responses developed are presented for demonstrating the cyclic and ratcheting responses of UHMWPE under uniaxial loading. The responses also are scrutinized for determining the applicability of the thin-walled, tubular specimen in conducting large strain cyclic experiments. A unified state variable theory, the viscoplasticity theory based on overstress for polymers (VBOP) is implemented to simulate the recorded uniaxial responses of UHMWPE. The state of the VBOP model simulation is discussed and model improvements needed are suggested.

1.
Kurtz
,
S. M.
,
Muratoglu
,
O. K.
,
Evans
,
M.
, and
Edidin
,
A. A.
, 1999, “
Advances in the Processing, Sterilization, and Crosslinking of Ultra-High Molecular Weight Polyethylene for Total Joint Arthroplasty
,”
Biomaterials
0142-9612,
1659
, pp.
20
88
.
2.
Duhring
,
B.
, and
Iversen
,
G.
, 1999, “
The Application of Plastics in Dynamic Seals
,”
Proc. Inst. Mech. Eng.
0020-3483,
37
, pp.
213
227
.
3.
Nau
,
B. S.
, 1999, “
“An Historical Review of Studies of Polymeric Seals in Reciprocating Hydraulic Systems
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
213
, pp.
215
26
.
4.
Mao
,
K.
, 2007, “
A New Approach for Polymer Composite Gear Design
,”
Wear
0043-1648,
262
, pp.
432
441
.
5.
Avanzini
,
A.
, 2008, “
Mechanical Characterization and Finite Element Modeling of Cyclic Stress-Strain Behavior of Ultra High Molecular Weight Polyethylene
,”
Mater. Des.
0264-1275,
330
, pp.
29
43
.
6.
Ghorbel
,
E.
, 2008, “
A Viscoplasticity Constitutive Model for Polymeric Materials
,”
Int. J. Plast.
0749-6419,
2032
, pp.
24
58
.
7.
Colak
,
O. U.
, and
Dusunceli
,
N.
, 2006, “
Modeling Viscoelastic and Viscoplastic Behavior of High Density Polyethylene (HDPE)
,”
J. Eng. Mater. Technol.
0094-4289,
572
, pp.
78
128
.
8.
Colak
,
O. U.
, 2005, “
Modeling Deformation Behavior of Polymers With Viscoplasticity Theory Based on Overstress
,”
Int. J. Plast.
0749-6419,
21
, pp.
145
160
.
9.
Bergstrom
,
J. S.
,
Kurtz
,
S. M.
,
Rimnac
,
C. M.
, and
Edidin
,
A. A.
, 2002, “
Constitutive Modeling of Ultra-High Molecular Weight Polyethylene Under Large-Deformation and Cyclic Loading Conditions
,”
Biomaterials
0142-9612,
2329
, pp.
23
43
.
10.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
, 1998, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
0022-5096,
931
, pp.
46
54
.
11.
Wang
,
A.
,
Stark
,
C.
, and
Dumbleton
,
J. H.
, 1995, “
Role of Cyclic Plastic Deformation in the Wear of UHMWPE Acetabular Cups
,”
J. Biomed. Mater. Res.
0021-9304,
619
, pp.
26
29
.
12.
Jasty
,
M.
,
Goetz
,
D. D.
,
Bragdon
,
C. R.
,
Lee
,
K. R.
,
Hanson
,
A. E.
,
Elder
,
J. R.
, and
Harris
,
W. H.
, 1997, “
Wear of Polyethylene Acetabular Components in Total Hip Arthroplasty: An Analysis of One Hundred and Twenty-Eight Components Retrieved at Autopsy or Revision Operations
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
349
, pp.
58
79
.
13.
Harris
,
W. H.
, 2001, “
Wear and Periprosthetic Osteolysis
,”
Clin. Orthop. Relat. Res.
0009-921X,
393
, pp.
66
70
.
14.
Sobieraj
,
M. C.
, and
Rimnac
,
C. M.
, 2009, “
Ultra High Molecular Weight Polyethylene: Mechanics, Morphology, and Clinical Behavior
,”
J. Biomed. Mater. Res.
0021-9304,
2
, pp.
433
443
.
15.
Kurtz
,
S. M.
,
Pruitt
,
L.
,
Jewett
,
C. W.
,
Crawford
,
R. P.
,
Crane
,
D. J.
, and
Edidin
,
A. A.
, 1998, “
The Yielding, Plastic Flow, and Fracture Behavior of Ultra-High Molecular Weight Polyethylene Used in Total Joint Replacements
,”
Biomaterials
0142-9612,
19
, pp.
1989
03
.
16.
Pruitt
,
L. A.
, 2005, “
Deformation, Yielding, Fracture and Fatigue Behavior of Conventional and Highly Cross-Linked Ultra High Molecular Weight Polyethylene
,”
Biomaterials
0142-9612,
26
, pp.
905
915
.
17.
Simis
,
K. S.
,
Bistolfi
,
A.
,
Bellare
,
A.
, and
Pruitt
,
L. A.
, 2006, “
The Combined Effect of Crosslinking and High Crystallinity on the Microstructural and Mechanical Properties of Ultra High Molecular Weight Polyethylene
,”
Biomaterials
0142-9612,
1688
, pp.
27
94
.
18.
Colaco
,
R.
,
Gispert
,
M. P.
,
Serro
,
A. P.
, and
Saramago
,
B.
, 2007, “
An Energy-Based Model for the Wear of UHMWPE
,”
Tribol. Lett.
1023-8883,
119
, pp.
24
26
.
19.
Elbert
,
K. E.
,
Wright
,
T. M.
,
Rimnac
,
C. M.
,
Klein
,
R. W.
,
Ingraffea
,
A. R.
,
Gunsallus
,
K.
, and
Bartel
,
D. L.
, 1994, “
Fatigue Crack Propagation Behavior of ultra High Molecular Weight Polyethylene Under Mixed Mode Condition
,”
J. Biomed. Mater. Res.
0021-9304,
28
, pp.
181
187
.
20.
Estupiñán
,
J. A.
,
Bartel
,
D. L.
, and
Wright
,
T. M.
, 1998, “
Residual Stresses in Ultra-High Molecular Weight Polyethylene Loaded Cyclically by a Rigid Moving Indenter in Nonconforming Geometries
,”
J. Orthop. Res.
0736-0266,
16
, pp.
80
88
.
21.
Krzypow
,
D. J.
, and
Rimnac
,
C. M.
, 2000, “
Cyclic Steady State Stress-Strain Behavior of UHMWPE
,”
Biomaterials
0142-9612,
2081
, pp.
21
87
.
22.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
, 1995, “
Effects of Strain Rate, Temperature and Thermomechanical Coupling of the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
0167-6636,
193
, pp.
12
19
.
23.
Urriés
,
I.
,
Medel
,
F. J.
,
Ríos
,
R.
,
Gómez-Barrena
,
E.
, and
Puértolas
,
J. A.
, 2004, “
Comparative Cyclic Stress-Strain and Fatigue Resistance Behavior of Electron-Beam and Gamma-Irradiated Ultrahigh Molecular Weight Polyethylene
,”
J. Biomed. Mater. Res.
0021-9304,
70B
, pp.
152
160
.
24.
Medel
,
F. J.
,
Pena
,
P.
,
Cegonino
,
J.
,
Gomez-Barrena
,
E.
, and
Puertolas
,
J. A.
, 2007, “
Comparative Fatigue Behavior and Toughness of Remelted and Annealed Highly Crosslinked Polyethylene
,”
J. Biomed. Mater. Res.
0021-9304,
83B
, pp.
380
390
.
25.
Hassan
,
T.
, and
Kyriakides
,
S.
, 1994, “
Ratcheting of Cyclically Hardening and Softening Materials, Part I: Uniaxial Behavior
,”
Int. J. Plast.
0749-6419,
10
, pp.
84
149
.
26.
Hassan
,
T.
, and
Kyriakides
,
S.
, 1994, “
Ratcheting of Cyclically Hardening and Softening Materials, Part II: Multiaxial Behavior
,”
Int. J. Plast.
0749-6419,
185
, pp.
10
12
.
27.
Krishna
,
S.
,
Hassan
,
T.
,
Naceur
,
I. B.
,
Sai
,
K.
, and
Cailletaud
,
G.
, 2009, “
Macro Versus Micro Scale Cyclic Plasticity Models in Simulating Nonproportional Cyclic and Ratcheting Responses of Stainless Steel 304
,”
Int. J. Plast.
0749-6419,
25
, pp.
1910
1949
.
28.
Lesser
,
A. J.
, 1995, “
Changes in Mechanical Behavior During Fatigue of Semicrystalline Thermoplastics
,”
J. Appl. Polym. Sci.
0021-8995,
869
, pp.
58
79
.
29.
Shen
,
X.
,
Xia
,
Z.
, and
Ellyin
,
F.
, 2004, “
Cyclic Deformation Behavior of an Epoxy Polymer. Part I: Experimental Investigation
,”
Polym. Eng. Sci.
0032-3888,
2240
, pp.
44
46
.
30.
Chen
,
X.
, and
Hui
,
S.
, 2005, “
Ratcheting Behavior of PTFE Under Cyclic Compression
,”
Polym. Test.
0142-9418,
829
, pp.
24
33
.
31.
Tao
,
G.
, and
Xia
,
Z.
, 2007, “
Ratcheting Behavior of an Epoxy Polymer and Its Effect on Fatigue Life
,”
Polym. Test.
0142-9418,
451
, pp.
26
60
.
32.
Yu
,
W.
,
Chen
,
X.
,
Wang
,
Y.
,
Yan
,
L.
, and
Bai
,
N.
, 2008, “
Uniaxial Ratcheting Behavior of Vulcanized Natural Rubber
,”
Polym. Eng. Sci.
0032-3888,
191
, pp.
48
97
.
33.
Zhang
,
Z.
,
Chen
,
X.
, and
Wang
,
T.
, 2008, “
A Simple Constitutive Model for Cyclic Compressive Ratcheting Deformation of Polytetrafluoroethylene (PTFE) With Stress Rate Effects
,”
Polym. Eng. Sci.
0032-3888,
48
, pp.
29
36
.
34.
Drozdov
,
A. D.
, 2010, “
Cyclic Viscoplasticity of Semicrystalline Polymers
,”
Mech. Res. Commun.
0093-6413,
37
, pp.
28
31
.
35.
Ellyin
,
F.
,
Vaziri
,
R.
, and
Bigot
,
L.
, 2007, “
Prediction of Two Nonlinear Viscoelastic Constitutive Relations for Polymers Under Multiaxial Loadings
,”
Polym. Eng. Sci.
0032-3888,
47
, pp.
593
607
.
36.
Xia
,
Z.
,
Shen
,
X.
, and
Ellyin
,
F.
, 2005, “
Biaxial Cyclic Deformation of an Epoxy Resin: Experiments and Constitutive Modeling
,”
J. Mater. Sci.
0022-2461,
40
, pp.
643
654
.
37.
Hassan
,
T.
, and
Kyriakides
,
S.
, 1992, “
Ratcheting in Cyclical Plasticity, Part I: Uniaxial Behavior
,”
Int. J. Plast.
0749-6419,
8
, pp.
91
116
.
38.
Hassan
,
T.
,
Corona
,
E.
, and
Kyriakides
,
S.
, 1992, “
Ratcheting in Cyclical Plasticity, Part II: Multiaxial Behavior
,”
Int. J. Plast.
0749-6419,
8
, pp.
117
146
.
39.
Krempl
,
E.
, 1987, “
Models of Viscoplasticity—Some Comments on Equilibrium (Back) Stress and Drag Stress
,”
Acta Mech.
0001-5970,
69
, pp.
25
42
.
40.
Krempl
,
E.
, 1996, “
A Small Strain Viscoplasticity Theory Based on Overstress
,”
Unified Constitutive Laws of Plastic Deformation
,
A. S.
Krausz
and
K.
Krausz
, eds.,
Academic
,
San Diego, CA
, pp.
281
318
.
41.
Colak
,
O. U.
, 2004, “
Viscoplasticity Theory Applied to Proportional and Non-Proportional Cyclic Loading at Small Strains
,”
Int. J. Plast.
0749-6419,
20
(
8–9
), pp.
1387
1401
.
You do not currently have access to this content.