In this paper, a new type of cohesive element that employs multiple subdomain integration (MSDI) for improved cohesive stress integration accuracy of bonded plate/shell elements has been formulated. Within each subdomain, stress integration is compatible with existing schemes such as Gaussian integration (GI), Newton–Cotes integration, or the mixed Gaussian and subdomain integration (mixed GI&SDI). The numerical accuracy, efficiency, and robustness of this element when employing three integration methods for MSD cohesive stress integration have been evaluated and compared through a benchmark mode-I fracture problem of bonded double-cantilever plates. The MSDI offers at least 50% improvement of numerical accuracy as compared to the best integration method in literature and has the best numerical robustness. This significant improvement pushes the structural mesh size restriction from limiting size of 1/3–1/5 cohesive zone length to 1.5–2 times the cohesive zone length. The formulation is very easy to be implemented into any finite element programs including commercial packages. Furthermore, this formulation enables the use of dual-mesh for delamination analyses of bonded structural shells/plates, which is of practical importance because it greatly reduces the burden of mesh generation for complicated composite structures. It has also been demonstrated that using high-order shell/plate elements can improve the numerical accuracy in general because the nonlinear deformation profile permitted by this type of elements can better describe the nonlinear deformation in the crack-tip element (partially bonded elements).

References

1.
Yang
,
Q. D.
,
Thouless
,
M. D.
, and
Ward
,
S. M.
, 1999, “
Numerical Simulations of Adhesively-Bonded Beams Failing With Extensive Plastic Deformation
,”
J. Mech. Phys. Solids
,
47
, pp.
1337
1353
.
2.
Yang
,
Q. D.
, and
Thouless
,
M. D.
, 2001, “
Mixed Mode Fracture of Plastically-Deforming Adhesive Joints
,”
Int. J. Fract.
,
110
, pp.
175
187
.
3.
Yang
,
Q. D.
,
Thouless
,
M. D.
, and
Ward
,
S. M.
, 2001, “
Elastic-Plastic Mode-II Fracture of Adhesive Joints
,”
Int. J. Solids Struct.
,
38
, pp.
3251
3262
.
4.
Xie
,
D.
, et al.
, 2006, “
Discrete Cohesive Zone Model to Simulate Static Fracture in 2D Tri-Axially Braided Carbon Fiber Composites
,”
J. Compos. Mater.
,
40
, pp.
2025
2046
.
5.
Pineda
,
E. J.
,
Waas
,
A. M.
,
Bednarcyk
,
B. A.
,
Collier
,
C. S.
, and
Yarrington
,
P. W.
, 2009, “
Progressive Damage and Failure Modeling in Notched Laminated Fiber Reinforced Composites
,”
Int. J. Fract.
,
158
, pp.
125
143
.
6.
Yang
,
Q. D.
, and
Cox
,
B. N.
, 2005, “
Cohesive Models for Damage Evolution in Laminated Composites
,”
Int. J. Fract.
,
133
(
2
), pp.
107
137
.
7.
Wisnom
,
W. R.
, and
Hallett
,
S. R.
, 2009, “
The Role of Delamination in Strength, Failure Mechanism and Hole Size Effect in Open Hole Tensile Tests on Quasi-Isotropic Laminates
,”
Composites, Part A
,
40
, pp.
335
342
.
8.
Chaboche
,
J. L.
,
Lesne
,
P. M.
, and
Maire
,
J. F.
, 1995, “
Continumm Damage Mechanics, Anisotropy and Damage Deactivation for Brittle Materials Like Concrete and Ceramic Composites
,”
Int. J. Damage Mech.
,
4
(
1
), pp.
5
22
.
9.
Chaboche
,
J. L.
,
Girard
,
R.
, and
Levasseur
,
P.
, 1997, “
On the Interface Debonding Models
,”
Int. J. Damage Mech.
,
6
, pp.
220
256
.
10.
Tay
,
T.-E.
, 2003, “
Characterization and Analysis of Delamination Fracture in Composites: An Overview of Developments from 1990 to 2001
,”
Appl. Mech. Rev.
,
56
(
1
), pp.
1
32
.
11.
Raju
,
I. S.
,
Crews
,
J. H.
, and
Aminpour
,
M. A.
, 1988, “
Convergence of Strain-Energy Release Rate Components for Edge Delaminated Composite Laminates
,”
Eng. Fract. Mech.
,
30
, pp.
383
396
.
12.
Galessgen
,
E. H.
,
Riddel
,
W. T.
, and
Raju
,
I. S.
, 2002, “
Nodal Constraint, Shear Deformation and Continuity Effects Related to the Modeling of Debonding of Laminates Using Shell Elements
,”
Comput. Model. Eng. Sci.
,
3
(
1
), pp.
103
116
.
13.
Remmers
,
J. C.
,
Wells
,
G. N.
, and
De Borst
,
R.
, 2003, “
A Solid Like Shell Element Allowing for Arbitrary Delamination
,”
Int. J. Numer. Methods Eng.
,
58
, pp.
2013
2040
.
14.
Remmers
,
J. C.
, 2006, “
Discontinuities in Materials and Structures—A Unifying Computational Approach
,” Ph.D. thesis, Delft University, Netherlands.
15.
Borg
,
R.
,
Nilsson
,
L.
, and
Simonsson
,
K.
, 2004, “
Simulation of Low Velocity Impact on Fiber Laminates Using a Cohesive Zone Based Delamination Model
,”
Compos. Sci. Technol.
,
64
, pp.
279
288
.
16.
Hallett
,
S. R.
, and
Wisnom
,
M. R.
, 2006, “
Numerical Investigation of Progressive Damage and the Effect of Layup in Notched Tensile Tests
,”
J. Compos. Mater.
,
40
, pp.
1229
1245
.
17.
Hallett
,
S. R.
, and
Wisnom
M. R.
, 2006, “
Experimental Investigation of Progressive Damage and the Effect of Layup in Notched Tensile Tests
,”
J. Compos. Mater.
,
40
, pp.
119
141
.
18.
Yang
,
B.
, 2002, “
Examination of Free Edge Crack Nucleation of Around an Open Hole in Composite Laminates
,”
Int. J. Fract.
,
115
, pp.
173
191
.
19.
Hallett
,
S. R.
, et al.
, 2009, “
The Open Hole Tensile Test: A Challenge for Virtual Testing of Composites
,”
Int. J. Fract.
,
158
, pp.
169
181
.
20.
Van de Meer
,
F. P.
, and
Sluys
,
L. J.
, 2009, “
A Phantom Node Formulation With Mixed Mode Cohesive Law for Splitting in Laminates
,”
Int. J. Fract.
,
158
, pp.
107
124
.
21.
Moës
,
N.
, and
Belytschko
,
T.
, 2002, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
,
69
, pp.
813
833
.
22.
Zi
,
G.
, and
Belytschko
,
T.
, 2003, “
New Crack-Tip Elements for XFEM and Applications to Cohesive Cracks
,”
Int. J. Numer. Methods Eng.
,
57
(
15
), pp.
2221
2240
.
23.
de Borst
,
R.
,
Remmers
,
J. J. C.
, and
Needleman
,
A.
, 2006, “
Mesh-Independent Discrete Numerical Representations of Cohesive-Zone Models
,”
Eng. Fract. Mech.
,
73
(
2
), pp.
160
177
.
24.
Fang
,
X. J.
, et al.
, 2011, “
High-Fidelity Simulations of Multiple Fracture Processes in a Laminated Composites in Tension
,”
J. Mech. Phys. Solids
,
59
, pp.
1355
1373
.
25.
Ling
,
D. S.
,
Yang
,
Q. D.
, and
Cox
,
B. N.
, 2009, “
An Augmented Finite Element Method for Modeling Arbitrary Discontinuities in Composite Materials
,”
Int. J. Fract.
,
156
, pp.
53
73
.
26.
Sun
,
Y.
,
Hu
,
Y.
, and
Liew
,
K. M.
, 2007, “
A Mesh-Free Simulation of Cracking and Failure Using the Cohesive Segments Method
,”
Int. J. Eng. Sci.
,
45
, pp.
541
553
.
27.
Barbieri
,
E.
, and
Meo
,
M.
, 2009, “
A Meshfree Penalty-Based Approach to Delamination in Composites
,”
Compos. Sci. Technol.
,
69
, pp.
2169
2177
.
28.
Nguyen
,
V.
, et al.
, 2008, “
Meshless Methods: A Review and Computer Implementation Aspects
,”
Math. Comput. Simul.
,
79
, pp.
763
813
.
29.
Turon
,
A.
, et al.
, 2007, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
, pp.
1665
1682
.
30.
Bruno
,
D.
,
Greco
,
F.
, and
Lonetti
,
P.
, 2005, “
Computation of Energy Release Rate and Mode Separation in Delaminated Composite Plate by Using Plate and Interface Variables
,”
Mech. Adv. Mater. Struct.
,
12
(
4
), pp.
285
304
.
31.
Davila
,
C. G.
,.
Camanho
,
P. P.
, and
Turon
,
A.
, 2008, “
Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements
,”
J. Aircr.
,
45
, pp.
663
672
.
32.
Yang
,
Q. D.
, et al.
, 2010, “
An Improved Cohesive Element for Shell Delamination Analyses
,”
Int. J. Numer. Methods Eng.
,
83
(
5
), pp.
611
641
.
You do not currently have access to this content.