Electrospun polymer nanofibers are attractive due to their unique volume-to-surface area, chemical, electrical, and optical properties. Department of Homeland security has interest in applications with polymeric scintillation detectors that directly discriminate between neutron and gamma radiations using manufacturing techniques that are inexpensive and which can be effectively implemented to produce large area detectors. Lithium-6 (6Li) isotope has a significant thermal neutron cross-section and produces high energy charged particles upon thermal neutron absorption. In this research, 6Li loaded polymer composite was successfully spun onto a stationary stainless steel target creating a thermal neutron scintillator made of randomly oriented fibers. Fiber mats thus obtained were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) for morphology, and fluorospectroscopy for optical properties. Additionally, the fiber mats were characterized for polymeric properties including microstructure evaluation and response to thermal neutrons, alpha, beta, and gamma radiation using suitable radiation facilities. Fiber matrix was made out of an aryl vinyl polymer and a wavelength shifting fluor with efficient resonant energy transfer characteristics. The mats produced had scintillation fibers having diameters from 200 nm to 3.2 μm.

References

1.
Birowosuto
,
M. D.
, 2008, “
Li-Based Thermal Neutron Scintillator Research; Rb2LiYBr6: Ce3+ and Other Elpasolites
,”
IEEE Trans. Nucl. Sci.
,
55
(
3
), pp.
1152
1155
.
2.
Knoll
,
G. F.
, 2010,
Radiation Detection and Measurement
, 4th ed.,
John Wiley and Sons
,
Hoboken, NJ
, pp.
227
522
.
3.
van Eijk
,
C. W. E.
,
de Haas
,
J. T. M.
,
Dorenbos
,
P.
,
Krämer
,
K. W.
, and
Gudel
,
H. U.
, 2005, “
Development of Elpasolite and Monoclinic Thermal Neutron Scintillators
,”
Proceedings of IEEE Nuclear Science Symposium Conference Record
, pp.
239
243
.
4.
Kietze
,
T.
,
Neher
,
D.
,
Landfester
,
K.
,
Montenegro
,
R.
,
Güntner
,
R.
, and
Scherf
,
U.
, 2003, “
Novel Approaches to Polymer Blends Based on Polymer Nanoparticles
,”
Nature Mater.
,
2
, pp.
408
412
.
5.
Sen
,
I.
,
Penumadu
,
D.
,
Williamson
,
M.
,
Miller
,
L. F.
,
Green
,
A. D.
, and
Mabe
,
A. N.
, 2011, “
Thermal Neutron Scintillator Detectors Based on Poly(2-Vinylnapthalene) Composite Films
,”
IEEE Trans. Nucl. Sci.
,
58
(
3
), pp.
1386
1393
.
6.
Andrady
,
A. L.
, 2008,
Science and Technology of Polymer Nanofibers, John
Wiley and Sons, Inc.
,
Hoboken, NJ
, pp.
81
311
.
7.
Kalra
,
V.
,
Lee
,
J.
,
Lee
,
J. H.
,
Lee
,
S. G.
,
Marquez
,
M.
,
Wiesner
,
U.
, and
Joo
,
Y. L.
, 2008, “
Controlling Nanoparticle Location via Confined Assembly in Electrospun Block Copolymer Nanofibers
,”
Small
,
4
(
11
), pp.
2067
2073
.
8.
Song
,
T.
,
Zhang
,
Y.
,
Zhou
,
T.
,
Lim
,
C. T.
,
Ramakrishna
,
S
, and
Liu
,
B.
, 2005, “
Encapsulation of Self-assembled FePt Magnetic Nanoparticles in PCL nanofibers by Coaxial Electrospinning
,”
Chem. Phys. Lett.
,
415
(
4-6
), pp.
317
322
.
9.
Ma
,
M.
,
Krikorian
,
V.
,
Yu
,
J. H.
,
Thomas
,
E. L.
, and
Rutledge
,
G. C.
, 2006, “
Electrospun Polymer Nanofibers with Internal Periodic Structure Separation of Cylindrically Confined Block Copolymers
,”
Nano Lett.
,
6
(
12
), pp.
2969
2972
.
10.
Doshi
,
J.
, and
Reneker
,
D. H.
, 1995, “
Electrospinning Process and Applications of Electrospun Fibers
,”
J. Electrostat.
,
35
, pp.
151
160
.
11.
Dayal
,
P.
, and
Kyu
,
T.
, 2006, “
Porous Fiber Formation in Polymer-Solvent System Undergoing Solvent Evaporation
,”
J. Appl. Phys.
,
100
,
043512
.
12.
Wang
,
Z. L.
, 2000,
Characterization of Nanophase Materials
, 1st ed.,
Wiley-VCH
,
Weinheim, DE
, pp.
6
7
, Chap. 1.
13.
Rotello
,
V.
, 2004,
Nanoparticles: Building Blocks for Nanotechnology
,
Springer
,
New York, NY
, pp.
38
39
, Chap. 2.
14.
Caruta
,
B. M.
, 2005,
Nanomaterials: New Research
.,
Nova Science Publishers
,
New York, NY
, pp.
3
5
, Chap. 1.
15.
Kim
,
J. K.
, and
Heejon
,
A.
, 2008, “
Fabrication and Characterization of Polystyrene/Gold Nanoparticle Composite Nanofibers
,”
Macromol. Res.
,
16
(
2
), pp.
163
168
.
16.
Lin
,
Z.
,
Gilbert
B.
,
Liu
Q.
,
Ren
,
G.
, and
Huang
F.
, 2006, “
A Thermodynamically Stable Nanophase Material
,”
J. Am. Chem. Soc.
,
128
(
18
), pp.
6126
6131
.
17.
Yoshimatsu
,
K.
,
Ye
,
L.
,
Stenlund
,
P.
, and
Chronakis
,
I. S.
, 2008, “
A Simple Method For Preparation of Molecularly Imprinted Nanofiber Materials with Signal Transduction Ability
,”
Chem. Commun.
,
17
, pp.
2022
2024
.
18.
Yoshimatsu
,
K.
,
Ye
,
L.
,
Lindberg
,
J.
, and
Chronakis
,
I. S.
, 2008, “
Selective Molecular Adsorption Using Electrospun Nanofiber Affinity Membranes
,”
Biosens. Bioelectron.
,
23
, pp.
1208
1215
.
19.
Yang
,
C.
,
Jia
,
Z.
,
Liu
,
J.
,
Xu
,
Z.
,
Guan
,
Z.
, and
Wang
,
L.
, 2009, “
Guiding Effect of Surface Electric Field of Collector on Deposited Electrospinning Fibers
,”
IEEE Trans. Dielectr. Electr. Insul.
,
16
(
3
), pp.
785
792
.
20.
Megelski
,
S.
,
Stephens
,
J. S.
,
Chase
,
D. B.
, and
Rabolt
,
J. F.
, 2002, “
Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers
,”
Macromolecules
,
35
(
22
), pp.
8456
8466
.
21.
Dayal
,
P.
, 2007, “
Dynamics and Morphology Development in Electrospinning of Polymer Solutions
,” Ph.D. thesis, The University of Akron, Akron, OH.
22.
Wu
,
X. F.
,
Salkovskiy
,
Y.
, and
Dzenis
,
Y. A.
, 2011, “
Modeling of Solvent Evaporation from Polymer Jets in Electrospinning
,”
Appl. Phys. Lett.
,
98
, pp.
223108
.
23.
Yeo
,
L. Y.
, and
Friend
,
J. R.
, 2006, “
Electrospinning Carbon Nanotube Polymer Composite Nanofibers
,”
J. Exp. Nanosci.
,
1
(
2
), pp.
177
209
.
24.
Wang
,
Y.
,
Wang
,
B.
,
Wang
,
G.
,
Yin
,
T.
, and
Yu
,
Q.
, 2009, “
A Novel Method for Preparing Electrospun Fibers with Nano-/Micro-scale Porous Structures
,”
Polym. Bull.
,
63
, pp.
259
265
.
25.
Bognitzki
,
M.
,
Frese
,
T.
,
Steinhart
,
M.
,
Greiner
,
A.
, and
Wendorff
,
J. H.
, 2001, “
Preparation of Fibers With Nanoscaled Morphologies: Electrospinning of Polymer Blends
,”
Polym. Eng. Sci.
,
41
(
6
), pp.
982
989
.
26.
Dzenis
,
Y.
, 2004, “
Spinning Continuous Fibers for Nanotechnology
,”
Science
,
304
, pp.
1917
1919
.
27.
Dersch
,
R.
,
Liu
,
T.
,
Schaper
,
A. K.
,
Greiner
,
A.
, and
Wendroff
,
J. H.
, 2003, “
Electrospun Nanofibers: Internal Structure and Intrinsic Orientation
,”
J. Polym. Sci. Part A: Polym. Chem.
,
41
, pp.
545
553
.
28.
Russo
,
M. V.
, 2010,
Advances in Macromolecules: Perspectives and Applications
,
Springer
,
New York, NY
, p.
57
, Chap. 1.
29.
Semerak
,
S. N.
, and
Frank
,
C. W.
, 1984,
"Photophysics of Excimer Formation in Aryl Vinyl Polymers
,
" Adv. Polym. Sci.
,
54
, pp.
31
85
.
30.
Wunderlich
,
B.
, 2009, “
Thermodynamics and Properties of Nanophases
,”
Thermochim. Acta
,
492
, pp.
2
15
.
31.
Schiek
,
M.
,
Balzer
,
F.
,
Al-Shamery
,
K.
,
Brewer
,
J. R.
,
Lutzen
,
A.
, and
Rubahn
,
H. G.
, 2008, “
Organic Molecular Nanotechnology
,”
Small
,
4
, pp.
176
181
.
32.
Xu
,
C. X.
,
Sun
,
X. W.
,
Yuen
,
C.
,
Chen
,
B. J.
,
Yu
,
S. F.
, and
Dong
,
Z. L.
, 2005, “
Ultraviolet Amplified Spontaneous Emission from Self-Organized Network of Zinc Oxide Nanofibers
,”
Appl. Phys. Lett.
,
86
,
011118
.
33.
Lemmer
,
U.
, 1998, “
Stimulated Emission and Lasing in Conjugated Polymers
,”
Polym. Adv. Technol.
,
9
, pp.
476
487
.
34.
Schnabel
,
W.
, 2007,
Polymers and Light: Fundamentals and Technical Applications
,
Wiley-VCH
,
Weinheim, DE
, pp.
44
47
, Chap. 1.
35.
Yang
,
P.
,
Wirnsberger
,
G.
,
Huang
,
H. C.
,
Cordero
,
S. R.
,
McGehee
,
M. D.
,
Scott
,
B.
,
Deng
,
T.
,
Whitesides
,
G. M.
,
Chmelka
,
B. F.
,
Buratto
,
S. K.
, and
Stucky
,
G. D.
, 2000, “
Mirrorless Lasing from Mesostructured Waveguides Patterned by Soft Lithography
,”
Science
,
287
, pp.
465
467
.
36.
Camposeo
,
A.
,
Di Benedetto
,
F.
,
Stabile
,
R.
,
Neves
,
A. A. R.
,
Cingolani
,
R.
, and
Pisignano
,
D.
, 2009, “
Laser Emission from Electrospun Polymer Nanofibers
,”
Small
,
5
(
5
), pp.
562
566
.
37.
Camposeo
A.
,
Mele
,
E.
,
Persano
,
L.
,
Pisignano
,
D.
, and
Cingolani
,
R.
, 2006, “
Role of Doping Concentration on the Competition Between Amplified Spontaneous Emission and Nonradiative Energy Transfer in Blends of Conjugated Polymers
,”
Phys. Rev. B
,
73
,
165201
.
38.
Pang
,
Y.
,
Li
,
J.
,
Hu
,
B.
, and
Karasz
,
F. E.
, 1999, “
A Highly Luminescent Poly[m-phenylenevinylene)-alt-(p-phenylenevinylene)] with Defined Conjugation Length and Improved Solubility
,”
Macromolecules
,
32
(
12
), pp.
3946
3950
.
39.
Inai
,
R.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
, 2005, “
Structure and Properties of Electrospun PLLA Single Nanofibers
,”
Nanotechnology
,
16
, pp.
208
213
.
40.
Bognitzki
,
M.
,
Czado
,
W.
,
Frese
,
T.
,
Schaper
,
A.
,
Hellwig
,
M.
,
Steinhart
,
M.
,
Greiner
,
A.
, and
Wendroff
,
J. H.
, 2001,
“Nanostructured Fibers via Electrospinning”
,
Adv. Mater.
,
13
(
1
), pp.
70
72
.
41.
Eda
,
G.
,
Liu
,
J.
, and
Shivkumar
,
S.
, 2007, “
Solvent Effects on Jet Evolution During Electrospinning of Semi-Dilute Polystyrene Solutions
,”
Eur. Polym. J.
,
43
, pp.
1154
1167
.
42.
Uyar
,
T.
, and
Besebacher
,
F.
, 2008, “
Electrospinning of Uniform Polystyrene Fibers: The Effect of Solvent Conductivity
,”
Polymer
,
49
, pp.
5336
5343
.
43.
Tomczak
,
N.
,
Gu
,
S.
,
Han
,
M.
,
van Hulst
,
N. F.
, and
Vancso
,
G. J.
, 2006, “
Single Light Emitters in Electrospun Polymer Nanofibers: Effect of Local Confinement on Radioactive Decay
,”
Eur. Polym. J.
,
42
, pp.
2205
2210
.
44.
Sheridan
,
A. K.
,
Turnbull
,
G. A.
,
Safonov
,
A. N.
, and
Samuel
,
I. D. W.
2000, “
Tuneability of Amplified Spontaneous Emission Through Control of the Waveguide-Mode Structure in Conjugated Polymer Films
,”
Phys. Rev. B
,
62
(
18
), pp.
R11929
R11932
.
45.
Ladik
,
J.
, 1984,
Quantum Chemistry of Polymers-Solid Aspects
, 1st ed.,
D.
Reidel
, Dordrecht, NL, pp.
259
260
.
46.
Wick
,
K.
,
Hornung
,
R.
, and
Gosau
,
T.
, 2005, “
Reduction of the Permanent Radiation Induced Absorption by Illumination of Plastics Scintillators During γ-Irraditation
,”
Nucl. Instrum. Methods Phys. Res. A
,
538
, pp.
668
671
.
47.
Carturan
,
S.
, 2011, “
Novel Polysiloxane-Based Scintillators for Neutron Detection
,”
Radiat. Prot. Dosim.
,
143
, pp.
471
476
.
48.
Carron
,
N. J.
, 2007,
An Introduction to the Passage of Energetic Particles through Matter
,
Taylor and Francis, NY
, pp.
307
308
.
You do not currently have access to this content.