The low in-plane modulus of honeycombs may be used for compliant structures with a high elastic limit while maintaining a required modulus. Numerical and finite element (FE) studies for a functional design of honeycombs having a high shear strength, (τpl*)12 and a high shear yield strain, (γpl*)12 are conducted with two material selections—mild-steel (MS) and polycarbonate (PC) and five honeycomb configurations, when they are designed to be a target shear modulus, G12* of 6.5 MPa. A numerical study of cellular materials theory is used to explore the elastic limit of honeycombs. FE analysis is also employed to validate the numerical study. Cell wall thicknesses are found for each material to reach the target G12* for available cell heights with five honeycomb configurations. Both MS and PC honeycombs can be tailored to have the G12* of 6.5 MPa with 0.1–0.5 mm and 0.3–2.2 mm cell wall thicknesses, respectively, depending on the number of vertical stacks, N. The PC auxetic honeycomb with θ= −20 deg shows high shear flexibility, when honeycombs are designed to be the G12* of 6.5 MPa; a 0.72 MPa (τpl*)12 and a 13% (γpl*)12. The authors demonstrate a functional design with cellular materials with a large design space through the control of both material and geometry to generate a shear flexible property.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
2.
Masters
,
I. G.
, and
Evans
,
K. E.
, 1996, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
, pp.
403
422
.
3.
Bezazi
,
A.
,
Scarpa
,
F.
, and
Remillat
,
C.
, 2005, “
A Novel Centresymmetric Honeycomb Composite Structure
,”
Compos. Struct.
,
71
, pp.
356
364
.
4.
Balawi
,
S.
, and
Abot
,
J. L.
, 2008, “
A Refined Model for the Effective in-Plane Elastic Moduli of Hexagonal Honeycombs
,”
Compos. Struct.
,
84
, pp.
147
158
.
5.
Gonella
,
S.
, and
Ruzzene
,
M.
, 2008, “
Homogenization and Equivalent in-Plane Properties of Two Dimensional Periodic Lattices
,”
Int. J. Solid Struct.
,
45
, pp.
2897
2915
.
6.
Wang
,
A. J.
, and
Mcdowell
,
D. L.
, 2004, “
In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs
,”
ASME J. Eng. Mater. Technol.
,
126
, pp.
137
156
.
7.
Chung
,
J.
, and
Wass
,
A. M.
, 1999, “
Compressive Response and Failure of Circular Cell Polycarbonate Honeycombs under in-Plane Uniaxial Stresses
,”
ASME J. Eng. Mater. Technol.
,
121
, pp.
494
502
,
8.
Papka
,
S.
, and
Kyriakides
,
S.
, 1998, “
In-Plane Crushing of a Polycarbonate Honeycomb
,”
Int. J. Solid Struct.
,
35
, pp.
239
267
.
9.
Scarpa
,
F.
,
Blain
,
S.
,
Perrott
,
D.
,
Ruzzene
,
M.
, and
Yates
,
J. R.
, 2007, “
Elastic Buckling of Hexagonal Chiral Cell Honeycombs
,”
Composites, Part A
,
38
, pp.
280
289
.
10.
Torquato
,
S.
,
Gibiansky
,
L. V.
,
Silva
,
M. J.
, and
Gibson
,
L. J.
, 1998, “
Effective Mechanical and Transport Properties of Cellular Solids
,”
Int. J. Mech. Sci.
,
40
(
1
), pp.
71
82
.
11.
Bitzer
,
T.
,
Honeycomb Technology
(
Chapman and Hall
,
London, UK
, 1997).
12.
Vinson
,
J. R.
, 1999,
The Behavior of Sandwich Structures of Isotropic and Composite Materials
,
Technomic
,
Lancaster, PA
.
13.
Cutler
,
J.
, 2005,
Understanding Aircraft Structures
, 4th ed.,
Blackwell Publishing
,
Oxford, UK
.
14.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1997, “
Design and Fabrication of Compliant Micromechanisms and Structures with Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
,
6
, pp.
99
106
.
15.
Olympio
,
K. R.
, and
Gandhi
,
F.
, 2007, “
Zero-Nu Cellular Honeycomb Flexible Skins for One-Dimensional Wing Morphing
,”
48th Structures, Structural Dynamics, and Materials Conference
, AIAA/ASME/ASCE/AHS/ASC, Honolulu, Hawaii April 23–26.
16.
Bubert
,
E.
,
Woods
,
K. S.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
, 2008, “
Design and fabrication of a passive 1-D Morphing Aircraft Skin
,”
Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, AIAA2008-2045, Schaumburg, IL.
17.
Spadoni
,
A.
, and
Ruzzene
,
M.
, 2007, “
Static Aeroelastic Response of Chiral-core Airfoils
,
J. Intell. Mater. Syst. Struct.
,
18
, pp.
1067
1075
.
18.
Ju
,
J.
,
Ananthasayanam
,
B.
,
Summers
,
J. D.
, and
Joseph
,
P.
, 2010, “
Design of Cellular Shear Bands of a Non-Pneumatic Tire—Investigation of Contact Pressure
,”
SAE Int. J. Passenger Cars–Mech. Syst.
,
3
(
1
), pp.
598
606
.
19.
Berglind
,
L.
,
Ju
,
J.
, and
Summers
,
J. D.
, 2010, “
Method to Design Honeycombs for a Shear Flexible Structure
,”
SAE Int. J. Passenger Cars–Mech. Sys.
,
3
(
1
), pp.
588
597
.
20.
Ju
,
J.
, and
Summers
,
J. D.
, 2011, “
Compliant Hexagonal Periodic Lattice Structures Having Both High Shear Strength and High Shear Strain
,”
Mater. Des.
,
32
, pp.
512
524
.
21.
Stronge
,
W. J.
, and
Shim
,
V. P. -W. P.-W.
, 1988, “
Microdynamics of Crushing in Cellular Solids
,”
ASME J. Eng. Mater. Technol.
,
110
(4), pp.
185
190
.
22.
Papka
,
S.
, and
Kyriakides
,
S.
, 1994, “
In-Plane Compressive Response and Crushing of Honeycomb
,”
J. Mech. Phys. Solids
,
42
(10), pp.
1499
1532
.
23.
Atli
,
B.
, and
Gandhi
,
F.
, 2008, “
Energy Absorption of Cellular Honeycombs with Various Cell Angles under in-Plane Compressive Loading
,”
49th Structures, Structural Dynamics, and Materials Conference
, AIAA/ASME/ASCE/AHS/ASC, Schaumburg, IL April 7–10.
24.
Ashby
,
M. F.
, 1999,
Materials Selection and Process in Mechanical Design
,
Butterworth-Heinermann
, 2nd Edition, Burlington, MA.
25.
Parson
,
E.
,
Boyce
,
M. C.
, and
Parks
,
D. M.
, 2004, “
Experimental Investigation of the Large-Strain Tensile Behavior of Neat and Rubber—Toughened Polycarbonate
,”
Polymer
,
45
, pp.
2665
2684
You do not currently have access to this content.