The mechanical responses of small volume metallic compounds are addressed in this work through developing a nonlocal continuum theory. In this regard, a thermodynamic-based higher-order strain-gradient plasticity framework for coupled thermoviscoplasticity modeling is presented. The concept of thermal activation energy and the dislocations interaction mechanisms are taken into consideration to describe the choice of thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The theory is developed based on the decomposition of the thermodynamic conjugate forces into energetic and dissipative counterparts, which provides the constitutive equations to have both energetic and dissipative gradient length scales. The derived constitutive model is calibrated against the experimental data of bulge test conducted on thin films.

References

1.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity—Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.10.1016/0956-7151(94)90502-9
2.
Espinosa
,
H. D.
,
Prorok
,
B. C.
, and
Peng
,
B.
,
2004
, “
Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension
,”
J. Mech. Phys. Solids
,
52
(
3
), pp.
667
689
.10.1016/j.jmps.2003.07.001
3.
Vlassak
,
J. J.
,
Xiang
,
Y.
, and
Chen
,
X.
,
2005
, “
Plane-Strain Bulge Test for Thin Films
,”
J. Mater. Res.
,
20
(
9
), pp.
2360
2370
.10.1557/jmr.2005.0313
4.
Chen
,
X.
,
Ogasawara
,
N.
,
Zhao
,
M. H.
, and
Chiba
,
N.
,
2007
, “
On the Uniqueness of Measuring Elastoplastic Properties From Indentation: The Indistinguishable Mystical Materials
,”
J. Mech. Phys. Solids
,
55
(
8
), pp.
1618
1660
.10.1016/j.jmps.2007.01.010
5.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size-Dependent Hardness of Silver Single-Crystals
,”
J. Mater. Res.
,
10
(
4
), pp.
853
863
.10.1557/JMR.1995.0853
6.
Chen
,
K.
,
Meng
,
W. J.
,
Mei
,
F. H.
,
Hiller
,
J.
, and
Miller
,
D. J.
,
2011
, “
From Micro- to Nano-Scale Molding of Metals: Size Effect During Molding of Single Crystal Al With Rectangular Strip Punches
,”
Acta Mater.
,
59
(
3
), pp.
1112
1120
.10.1016/j.actamat.2010.10.044
7.
Chen
,
X.
, and
Vlassak
,
J. J.
,
2001
, “
Numerical Study on the Measurement of Thin Film Mechanical Properties by Means of Nanoindentation
,”
J. Mater. Res.
,
16
(
10
), pp.
2974
2982
.10.1557/JMR.2001.0408
8.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1611
.10.1016/S1359-6454(99)00020-8
9.
Bittencourt
,
E.
,
Needleman
,
A.
,
Gurtin
,
M. E.
, and
Van der Giessen
,
E.
,
2003
, “
A Comparison of Nonlocal Continuum and Discrete Dislocation Plasticity Predictions
,”
J. Mech. Phys. Solids
,
51
(
2
), pp.
281
310
.10.1016/S0022-5096(02)00081-9
10.
Nicola
,
L.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2003
, “
Discrete Dislocation Analysis of Size Effects in Thin Films
,”
J. Appl. Phys.
,
93
(
10
), pp.
5920
5928
.10.1063/1.1566471
11.
Aifantis
,
E. C.
,
1999
, “
Gradient Deformation Models at Nano, Micro, and Macro Scales
,”
ASME J. Eng. Mater. Technol.
,
121
(
2
), pp.
189
202
.10.1115/1.2812366
12.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
99
128
.10.1016/S0022-5096(99)00022-8
13.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
,
46
(
14
), pp.
5109
5115
.10.1016/S1359-6454(98)00153-0
14.
Xiang
,
Y.
, and
Vlassak
,
J. J.
,
2005
, “
Bauschinger Effect in Thin Metal Films
,”
Scr. Mater.
,
53
(
2
), pp.
177
182
.10.1016/j.scriptamat.2005.03.048
15.
Xiang
,
Y.
, and
Vlassak
,
J. J.
,
2006
, “
Bauschinger and Size Effects in Thin-Film Plasticity
,”
Acta Mater.
,
54
(
20
), pp.
5449
5460
.10.1016/j.actamat.2006.06.059
16.
Needleman
,
A.
,
Nicola
,
L.
,
Xiang
,
Y.
,
Vlassak
,
J. J.
, and
Van der Giessen
,
E.
,
2006
, “
Plastic Deformation of Freestanding Thin Films: Experiments and Modeling
,”
J. Mech. Phys. Solids.
54
(
10
), pp.
2089
2110
.10.1016/j.jmps.2006.04.005
17.
Nicola
,
L.
,
Xiang
,
Y.
,
Vlassak
,
J. J.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2006
, “
Plastic Deformation of Freestanding Thin Films: Experiments and Modeling
,”
J. Mech. Phys. Solids
,
54
(
10
), pp.
2089
2110
.10.1016/j.jmps.2006.04.005
18.
Muhlhaus
,
H. B.
, and
Aifantis
,
E. C.
,
1991
, “
A Variational Principle for Gradient Plasticity
,”
Int. J. Solids Struct.
,
28
(
7
), pp.
845
857
.10.1016/0020-7683(91)90004-Y
19.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1992
, “
On the Gradient-Dependent Theory of Plasticity and Shear Banding
,”
Acta Mech.
,
92
(
1–4
), pp.
209
225
.10.1007/BF01174177
20.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.10.1016/0022-5096(93)90072-N
21.
Zbib
,
H. M.
,
de la Rubia
,
T. D.
, and
Bulatov
,
V.
,
2002
, “
A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics
,”
ASME J. Eng. Mater. Technol.
,
124
(
1
), pp.
78
87
.10.1115/1.1421351
22.
Khraishi
,
T. A.
, and
Zbib
,
H. M.
,
2002
, “
Dislocation Dynamics Simulations of the Interaction Between a Short Rigid Fiber and a Glide Circular Dislocation Pile-Up
,”
Comput. Mater. Sci.
,
24
(
3
), pp.
310
322
.10.1016/S0927-0256(01)00253-1
23.
Schiotz
,
J.
,
Di Tolla
,
F. D.
, and
Jacobsen
,
K. W.
,
1998
, “
Softening of Nanocrystalline Metals at Very Small Grains
,”
Nature
,
391
, pp.
561
563
.10.1038/35328
24.
Niordson
,
C. F.
, and
Hutchinson
,
J. W.
,
2003
, “
Non-Uniform Plastic Deformation of Micron Scale Objects
,”
Int. J. Numer. Methods Eng.
56
(
7
), pp.
961
975
.10.1002/nme.593
25.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
106
(
4
), pp.
326
330
.10.1115/1.3225725
26.
Ziegler
,
H.
, and
Wehrli
,
C.
,
1987
, “
The Derivation of Constitutive Relations From the Free-Energy and the Dissipation Function
,”
Adv. Appl. Mech.
,
25
, pp.
183
238
.10.1016/S0065-2156(08)70278-3
27.
Ziegler
,
H.
,
1962
,
Some Extremum Principles in Irreversible Thermodynamics, With Application to Continuum Mechanics
,
Swiss Federal Institute of Technology
,
Zurich, Switzerland
.
28.
Ziegler
,
H.
,
1958
, “
An Attempt to Generalize Onsager's Principle, and Its Significance for Rheological Problems
,”
Z. Angew. Math. Phys.
,
9
(
5
), pp.
748
763
.10.1007/BF02424793
29.
Gurtin
,
M. E.
, and
Reddy
,
B. D.
,
2009
, “
Alternative Formulations of Isotropic Hardening for Mises Materials, and Associated Variational Inequalities
,”
Continuum Mech. Thermodyn.
,
21
(
3
), pp.
237
250
.10.1007/s00161-009-0107-3
30.
Faghihi
,
D.
, and
Voyiadjis
,
G. Z.
,
2012
, “
Determination of Nanoindentation Size Effects and Variable Material Intrinsic Length Scale for Body-Centered Cubic Metals
,”
Mech. Mater.
,
44
(
0
), pp.
189
211
.10.1016/j.mechmat.2011.07.002
31.
Shizawa
,
K.
, and
Zbib
,
H. M.
,
1999
, “
A Thermodynamical Theory of Gradient Elastoplasticity With Dislocation Density Tensor. I: Fundamentals
,”
Int. J. Plast.
,
15
(
9
), pp.
899
938
.10.1016/S0749-6419(99)00018-2
32.
Reddy
,
B. D.
,
2012
, “
Erratum to: The Role of Dissipation and Defect Energy in Variational Formulations of Problems in Strain-Gradient Plasticity, Part 1, Polycrystalline Plasticity
,”
Continuum Mech. Thermodyn.
,
24
(
1
), p.
79
.10.1007/s00161-011-0208-7
33.
Reddy
,
B. D.
,
2011
, “
The Role of Dissipation and Defect Energy in Variational Formulations of Problems in Strain-Gradient Plasticity. Part 2: Single-Crystal Plasticity
,”
Continuum Mech. Thermodyn.
,
23
(
6
), pp.
551
572
.10.1007/s00161-011-0195-8
34.
Fleck
,
N. A.
, and
Willis
,
J. R.
,
2009
, “
A Mathematical Basis for Strain-Gradient Plasticity Theory—Part I: Scalar Plastic Multiplier
,”
J. Mech. Phys. Solids
,
57
(
1
), pp.
161
177
.10.1016/j.jmps.2008.09.010
35.
Fredriksson
,
P.
, and
Gudmundson
,
P.
,
2007
, “
Modelling of the Interface Between a Thin Film and a Substrate Within a Strain Gradient Plasticity Framework
,”
J. Mech. Phys. Solids
,
55
(
5
), pp.
939
955
.10.1016/j.jmps.2006.11.001
36.
Voyiadjis
,
G. Z.
, and
Deliktas
,
B.
,
2009
, “
Mechanics of Strain Gradient Plasticity With Particular Reference to Decomposition of the State Variables Into Energetic and Dissipative Components
,”
Int. J. Eng. Sci.
,
47
(
11-12
), pp.
1405
1423
.10.1016/j.ijengsci.2009.05.013
37.
Gurtin
,
M. E.
,
2010
, “
A Finite-Deformation, Gradient Theory of Single-Crystal Plasticity With Free Energy Dependent on the Accumulation of Geometrically Necessary Dislocations
,”
Int. J. Plast.
,
26
(
8
), pp.
1073
1096
.10.1016/j.ijplas.2010.02.002
38.
Hansen
,
N. R.
, and
Schreyer
,
H. L.
,
1994
, “
A Thermodynamically Consistent Framework for Theories of Elastoplasticity Coupled With Damage
,”
Int. J. Solids Struct.
,
31
(
3
), pp.
359
389
.10.1016/0020-7683(94)90112-0
39.
Lemaitre
,
J.
,
1985
, “
Coupled Elasto-Plasticity and Damage Constitutive-Equations
,”
Comput. Methods Appl. Mech. Eng.
,
51
(
1–3
), pp.
31
49
.10.1016/0045-7825(85)90026-X
40.
Nemat-Nasser
,
S.
, and
Guo
,
W. G.
,
2000
, “
Flow Stress of Commercially Pure Niobium Over a Broad Range of Temperatures and Strain Rates
,”
Mater. Sci. Eng., A
,
284
(
1–2
), pp.
202
210
.10.1016/S0921-5093(00)00740-1
41.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2005
, “
Microstructural Based Models for BCC and FCC Metals With Temperature and Strain Rate Dependency
,”
Mech. Mater.
,
37
(
2–3
), pp.
355
378
.10.1016/j.mechmat.2004.02.003
42.
Taylor
,
G. I.
, and
Quinney
,
H.
,
1934
, “
The Latent Energy Remaining in a Metal After Cold Working
,”
Proc. R. Soc. London, Ser. A
,
143
(
849
), pp.
307
326
.10.1098/rspa.1934.0004
43.
Hodowany
,
J.
,
Ravichandran
,
G.
,
Rosakis
,
A. J.
, and
Rosakis
,
P.
,
2000
, “
Partition of Plastic Work Into Heat and Stored Energy in Metals
,”
Exp. Mech.
,
40
(
2
), pp.
113
123
.10.1007/BF02325036
44.
Mason
,
J. J.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
1994
, “
On the Strain and Strain-Rate Dependence of the Fraction of Plastic Work Converted to Heat—An Experimental-Study Using High-Speed Infrared Detectors and the Kolsky Bar
,”
Mech. Mater.
,
17
(
2–3
), pp.
135
145
.10.1016/0167-6636(94)90054-X
45.
Oliferuk
,
W.
, and
Maj
,
M.
,
2009
, “
Stress-Strain Curve and Stored Energy During Uniaxial Deformation of Polycrystals
,”
Eur. J. Mech. A-Solids
,
28
(
2
), pp.
266
272
.10.1016/j.euromechsol.2008.06.003
46.
Rosakis
,
P.
,
Rosakis
,
A. J.
,
Ravichandran
,
G.
, and
Hodowany
,
J.
,
2000
, “
A Thermodynamic Internal Variable Model for the Partition of Plastic Work Into Heat and Stored Energy in Metals
,”
J. Mech. Phys. Solids
,
48
(
3
), pp.
581
607
.10.1016/S0022-5096(99)00048-4
47.
Rusinek
,
A.
, and
Klepaczko
,
J. R.
,
2009
, “
Experiments on Heat Generated During Plastic Deformation and Stored Energy for TRIP Steels
,”
Mater. Des.
,
30
(
1
), pp.
35
48
.10.1016/j.matdes.2008.04.048
48.
Stainier
,
L.
, and
Ortiz
,
M.
,
2010
, “
Study and Validation of a Variational Theory of Thermo-Mechanical Coupling in Finite Visco-Plasticity
,”
Int. J. Solids Struct.
,
47
(
5
), pp.
705
715
.10.1016/j.ijsolstr.2009.11.012
49.
Mroz
,
Z.
, and
Oliferuk
,
W.
,
2002
, “
Energy Balance and Identification of Hardening Moduli in Plastic Deformation Processes
,”
Int. J. Plast.
,
18
(
3
), pp.
379
397
.10.1016/S0749-6419(00)00103-0
50.
Ristinmaa
,
M.
,
Wallin
,
M.
, and
Ottosen
,
N. S.
,
2007
, “
Thermodynamic Format and Heat Generation of Isotropic Hardening Plasticity
,”
Acta Mech.
,
194
(
1-4
), pp.
103
121
.10.1007/s00707-007-0448-6
51.
Aravas
,
N.
,
Kim
,
K. S.
, and
Leckie
,
F. A.
,
1990
, “
On the Calculations of the Stored Energy of Cold Work
,”
ASME J. Eng. Mater. Technol.
,
112
(
4
), pp.
465
470
.10.1115/1.2903358
52.
Zehnder
,
A. T.
,
1991
, “
A Model for the Heating Due to Plastic Work
,”
Mech. Res. Commun.
,
18
(
1
), pp.
23
28
.10.1016/0093-6413(91)90023-P
53.
Longère
,
P.
, and
Dragon
,
A.
,
2008
, “
Evaluation of the Inelastic Heat Fraction in the Context of Microstructure-Supported Dynamic Plasticity Modelling
,”
Int. J. Impact Eng.
,
35
(
9
), pp.
992
999
.10.1016/j.ijimpeng.2007.06.006
54.
Saanouni
,
K.
,
Forster
,
C. H.
, and
Hatira
,
F. B.
,
1994
, “
On the Anelastic Flow With Damage
,”
Int. J. Damage Mech.
,
3
(
2
), pp.
140
169
.10.1177/105678959400300203
55.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2009
, “
Thermodynamics Applied to Gradient Theories Involving the Accumulated Plastic Strain: The Theories of Aifantis and Fleck and Hutchinson and Their Generalization
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
405
421
.10.1016/j.jmps.2008.12.002
56.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2005
, “
A Theory of Strain-Gradient Plasticity for Isotropic, Plastically Irrotational Materials. Part II: Finite Deformations
,”
Int. J. Plast.
,
21
(
12
), pp.
2297
2318
.10.1016/j.ijplas.2005.01.006
57.
Gurtin
,
M. E.
,
2004
, “
A Gradient Theory of Small-Deformation Isotropic Plasticity That Accounts for the Burgers Vector and for Dissipation Due to Plastic Spin
,”
J. Mech. Phys. Solids
,
52
(
11
), pp.
2545
2568
.10.1016/j.jmps.2004.04.010
58.
Bardella
,
L.
,
2010
, “
Size Effects in Phenomenological Strain Gradient Plasticity Constitutively Involving the Plastic Spin
,”
Int. J. Eng. Sci.
,
48
(
5
), pp.
550
568
.10.1016/j.ijengsci.2010.01.003
59.
Nye
,
J. F.
,
1953
, “
Some Geometrical Relations in Dislocated Crystals
,”
Acta Metall.
,
1
(
2
), pp.
153
162
.10.1016/0001-6160(53)90054-6
60.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.10.1016/S0065-2156(08)70388-0
61.
Bassani
,
J. L.
,
2001
, “
Incompatibility and a Simple Gradient Theory of Plasticity
,”
J. Mech. Phys. Solids
,
49
(
9
), pp.
1983
1996
.10.1016/S0022-5096(01)00037-0
62.
Gurtin
,
M. E.
,
2000
, “
On the Plasticity of Single Crystals: Free Energy, Microforces, Plastic-Strain Gradients
,”
J. Mech. Phys. Solids
,
48
(
5
), pp.
989
1036
.10.1016/S0022-5096(99)00059-9
63.
Gudmundson
,
P.
,
2004
, “
A Unified Treatment of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1379
1406
.10.1016/j.jmps.2003.11.002
64.
Gurtin
,
M. E
, and
Anand
,
L.
,
2005
, “
A Theory of Strain-Gradient Plasticity for Isotropic, Plastically Irrotational Materials. Part I: Small Deformations
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1624
1649
.10.1016/j.jmps.2004.12.008
65.
Fleck
,
N. A.
, and
Willis
,
J. R.
,
2009
, “
A Mathematical Basis for Strain-Gradient Plasticity Theory. Part II: Tensorial Plastic Multiplier
,”
J. Mech. Phys. Solids
,
57
(
7
), pp.
1045
1057
.10.1016/j.jmps.2009.03.007
66.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2012
, “
Thermo-Mechanical Strain Gradient Plasticity With Energetic and Dissipative Length Scales
,”
Int. J. Plast.
,
30–31
(
0
), pp.
218
247
.10.1016/j.ijplas.2011.10.007
67.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
49
(
10
), pp.
2245
2271
.10.1016/S0022-5096(01)00049-7
68.
Lele
,
S. P.
, and
Anand
,
L.
,
2008
, “
A Small-Deformation Strain-Gradient Theory for Isotropic Viscoplastic Materials
,”
Philos. Mag.
,
88
(
30-32
), pp.
3655
3689
.10.1080/14786430802087031
69.
Lele
,
S. P.
, and
Anand
,
L.
,
2009
, “
A Large-Deformation Strain-Gradient Theory for Isotropic Viscoplastic Materials
,”
Int. J. Plast.
,
25
(
3
), pp.
420
453
.10.1016/j.ijplas.2008.04.003
70.
Cermelli
,
P.
, and
Gurtin
,
M. E.
,
2002
, “
Geometrically Necessary Dislocations in Viscoplastic Single Crystals and Bicrystals Undergoing Small Deformations
,”
Int. J. Solids Struct.
,
39
(
26
), pp.
6281
6309
.10.1016/S0020-7683(02)00491-2
71.
Gurtin
,
M. E.
, and
Ohno
,
N.
,
2011
, “
A Gradient Theory of Small-Deformation, Single-Crystal Plasticity That Accounts for GND-Induced Interactions Between Slip Systems
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
320
343
.10.1016/j.jmps.2010.10.005
72.
Rusinek
,
A.
,
Zaera
,
R.
, and
Klepaczko
,
J. R.
,
2007
, “
Constitutive Relations in 3-D for a Wide Range of Strain Rates and Temperatures—Application to Mild Steels
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5611
5634
.10.1016/j.ijsolstr.2007.01.015
73.
Farren
,
W. S.
, and
Taylor
,
G. I.
,
1925
, “
The Heat Developed During Plastic Extension of Metals
,”
Proc. R. Soc. London, Ser. A
,
107
(
743
), pp.
422
451
.10.1098/rspa.1925.0034
74.
Taylor
,
G. I.
, and
Quinney
,
H.
,
1932
, “
The Plastic Distortion of Metals
,”
Philos. Trans. R. Soc. London, Ser. A
,
230
, pp.
323
362
.10.1098/rsta.1932.0009
75.
Mollica
,
F.
,
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2001
, “
The Inelastic Behavior of Metals Subject to Loading Reversal
,”
Int. J. Plast.
,
17
(
8
), pp.
1119
1146
.10.1016/S0749-6419(00)00082-6
76.
Oliferuk
,
W.
,
Swiatnicki
,
W. A.
, and
Grabski
,
M. W.
,
1993
, “
Rate of Energy-Storage and Microstructure Evolution During the Tensile Deformation of Austenitic Steel
,”
Mater. Sci. Eng. A
,
161
(
1
), pp.
55
63
.10.1016/0921-5093(93)90475-T
77.
Oliferuk
,
W.
,
Swiatnicki
,
W. A.
, and
Grabski
,
M. W.
,
1995
, “
Effect of the Grain-Size on the Rate of Energy-Storage During the Tensile Deformation of an Austenitic Steel
,”
Mater. Sci. Eng. A
,
197
(
1
), pp.
49
58
.10.1016/0921-5093(94)09766-6
78.
Gurtin
,
M. E.
,
2002
, “
A Gradient Theory of Single-Crystal Viscoplasticity That Accounts for Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
,
50
(
1
), pp.
5
32
.10.1016/S0022-5096(01)00104-1
79.
Hasegawa
,
T.
,
Yakou
,
T.
, and
Karashima
,
S.
,
1975
, “
Deformation Behavior and Dislocation-Structures Upon Stress Reversal in Polycrystalline Aluminum
,”
Mater. Sci. Eng.
,
20
(
3
), pp.
267
276
.10.1016/0025-5416(75)90159-7
80.
Groma
,
I.
,
Csikor
,
F. F.
, and
Zaiser
,
M.
,
2003
, “
Spatial Correlations and Higher-Order Gradient Terms in a Continuum Description of Dislocation Dynamics
,”
Acta Mater.
,
51
(
5
), pp.
1271
1281
.10.1016/S1359-6454(02)00517-7
81.
Bardella
,
L.
,
2006
, “
A Deformation Theory of Strain Gradient Crystal Plasticity That Accounts for Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
,
54
(
1
), pp.
128
160
.10.1016/j.jmps.2005.08.003
82.
Ohno
,
N.
, and
Okumura
,
D.
,
2007
, “
Higher-Order Stress and Grain Size Effects Due to Self-Energy of Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1879
1898
.10.1016/j.jmps.2007.02.007
83.
Garroni
,
A.
,
Leoni
,
G.
, and
Ponsiglione
,
M.
,
2010
, “
Gradient Theory for Plasticity Via Homogenization of Discrete Dislocations
,”
J. Eur. Math. Soc.
,
12
(
5
), pp.
1231
1266
.10.4171/JEMS/228
84.
Lubarda
,
V. A.
,
2008
, “
On the Gibbs Conditions of Stable Equilibrium, Convexity and the Second-Order Variations of Thermodynamic Potentials in Nonlinear Thermoelasticity
,”
Int. J. Solids Struct.
,
45
(
1
), pp.
48
63
.10.1016/j.ijsolstr.2007.07.010
85.
Callen
,
H. B.
,
1960
,
Thermodynamics
,
John Wiley
,
New York
.
86.
Kuhlmann-Wilsdorf
,
D.
,
1989
, “
Theory of Plastic-Deformation—Properties of Low-Energy Dislocation-Structures
,”
Mater. Sci. Eng. A
,
113
, pp.
1
41
.10.1016/0921-5093(89)90290-6
87.
Kuhlmann-Wilsdorf
,
D.
,
1999
, “
The Theory of Dislocation-Based Crystal Plasticity
,”
Philos. Mag. A
,
79
(
4
), pp.
955
1008
.10.1080/01418619908210342
88.
Gurtin
,
M. E.
,
2008
, “
A Finite-Deformation, Gradient Theory of Single-Crystal Plasticity With Free Energy Dependent on Densities of Geometrically Necessary Dislocations
,”
Int. J. Plast.
,
24
(
4
), pp.
702
725
.10.1016/j.ijplas.2007.07.014
89.
Dascalu
,
C.
, and
Maugin
,
G. A.
,
1993
, “
Material Forces and Energy-Release Rates in Homogeneous Elastic Bodies With Defects
,”
C. R. Acad. Sci. Ser. II
,
317
(
9
), pp.
1135
1140
.
90.
Maugin
,
G. A.
, and
Trimarco
,
C.
,
1995
, “
On Material and Physical Forces in Liquid-Crystals
,”
Int. J. Eng. Sci.
,
33
(
11
), pp.
1663
1678
.10.1016/0020-7225(95)00025-S
91.
Zaiser
,
M.
, and
Aifantis
,
E. C.
,
2006
, “
Randomness and Slip Avalanches in Gradient Plasticity
,”
Int. J. Plast.
,
22
(
8
), pp.
1432
1455
.10.1016/j.ijplas.2005.07.010
92.
Shishvan
,
S. S.
,
Nicola
,
L.
, and
Van der Giessen
,
E.
,
2010
, “
Bauschinger Effect in Unpassivated Freestanding Thin Films
,”
J. Appl. Phys.
,
107
(
9
), p.
093529
.10.1063/1.3407505
93.
Cleveringa
,
H. H. M.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1999
, “
A Discrete Dislocation Analysis of Residual Stresses in a Composite Material
,”
Philos. Mag. A
,
79
(
4
), pp.
893
920
.10.1080/01418619908210338
94.
Caillard
,
D.
, and
Martin
,
J. L.
,
2003
,
Thermally Activated Mechanisms in Crystal Plasticity
(Pergamon Materials Series), Elsevier, Oxford, UK.
95.
Davoudi
,
K. M.
,
Nicola
,
L.
, and
Vlassak
,
J. J.
,
2012
, “
Dislocation Climb in Two-Dimensional Discrete Dislocation Dynamics
,”
J. Appl. Phys.
,
111
(
10
),
p. 103522
.10.1063/1.4718432
96.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), pp.
597
–613.10.1063/1.1711937
97.
Gurtin
,
M. E.
,
Anand
,
L.
, and
Lele
,
S. P.
,
2007
, “
Gradient Single-Crystal Plasticity With Free Energy Dependent on Dislocation Densities
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1853
1878
.10.1016/j.jmps.2007.02.006
98.
Ohno
,
N.
,
Okumura
,
D.
, and
Shibata
,
T.
,
2008
, “
Grain-Size Dependent Yield Behavior Under Loading, Unloading and Reverse Loading
,”
Int. J. Mod. Phys. B
,
22
(
31–32
), pp.
5937
5942
.10.1142/S0217979208051406
99.
Dahlberg
,
C.
, and
Faleskog
,
J.
,
2012
, “
An Improved Strain Gradient Plasticity Formulation With Energetic Interfaces: Theory and A Fully Implicit Finite Element Formulation
,”
Comput. Mech.
, pp.
1
19
.10.1007/s00466-012-0743-5
100.
Roy
,
A.
,
Peerlings
,
R. H. J.
,
Geers
,
M. G. D.
, and
Kasyanyuk
,
Y.
,
2008
, “
Continuum Modeling of Dislocation Interactions: Why Discreteness Matters?
,”
Mater. Sci. Eng. A
,
486
(
1–2
), pp.
653
661
.10.1016/j.msea.2007.09.074
101.
Kröner
,
E.
,
2001
, “
Benefits and Shortcomings of the Continuous Theory of Dislocations
,”
Int. J. Solids Struct.
,
38
(
6–7
), pp.
1115
1134
.10.1016/S0020-7683(00)00077-9
102.
Forest
,
S.
, and
Amestoy
,
M.
,
2008
, “
Hypertemperature in Thermoelastic Solids
,”
C. R. Mec.
,
336
(
4
), pp.
347
353
.10.1016/j.crme.2008.01.007
103.
Forest
,
S.
,
2009
, “
Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage
,”
ASCE J. Eng. Mech.
135
(
3
), pp.
117
131
.10.1061/(ASCE)0733-9399(2009)135:3(117)
104.
Forest
,
S.
, and
Aifantis
,
E. C.
,
2010
, “
Some Links Between Recent Gradient Thermo-Elasto-Plasticity Theories and the Thermomechanics of Generalized Continua
,”
Int. J. Solids Struct.
,
47
(
25–26
), pp.
3367
3376
.10.1016/j.ijsolstr.2010.07.009
105.
Arsenlis
,
A.
,
Parks
,
D. M.
,
Becker
,
R.
, and
Bulatov
,
V. V.
,
2004
, “
On the Evolution of Crystallographic Dislocation Density in Non-Homogeneously Deforming Crystals
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1213
1246
.10.1016/j.jmps.2003.12.007
106.
Geers
,
M. G. D.
,
Brekelmans
,
W. A. M.
, and
Bayley
,
C. J.
,
2007
, “
Second-Order Crystal Plasticity: Internal Stress Effects and Cyclic Loading
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S133
S145
.10.1088/0965-0393/15/1/S12
107.
Geers
,
M. G. D.
,
Peerlings
,
R. H. J.
,
Hoefnagels
,
J. P. M.
, and
Kasyanyuk
,
Y.
,
2009
, “
On a Proper Account of First- and Second-Order Size Effects in Crystal Plasticity
,”
Adv. Eng. Mater.
,
11
(
3
), pp.
143
147
.10.1002/adem.200800287
108.
Limkumnerd
,
S.
, and
Van der Giessen
,
E.
,
2008
, “
Study of Size Effects in Thin Films by Means of a Crystal Plasticity Theory Based on DiFT
,”
J. Mech. Phys. Solids
,
56
(
11
), pp.
3304
3314
.10.1016/j.jmps.2008.06.004
109.
Abu Al-Rub
,
R. K.
,
Voyiadjis
,
G. Z.
, and
Bammann
,
D. J.
,
2007
, “
A Thermodynamic Based Higher-Order Gradient Theory for Size Dependent Plasticity
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
2888
2923
.10.1016/j.ijsolstr.2006.08.034
110.
Abu Al-Rub
,
R. K.
,
2008
, “
Interfacial Gradient Plasticity Governs Scale-Dependent Yield Strength and Strain Hardening Rates in Micro/Nano Structured Metals
,”
Int. J. Plast.
,
24
(
8
), pp.
1277
1306
.10.1016/j.ijplas.2007.09.005
111.
Voyiadjis
,
G. Z.
,
Pekmezi
,
G.
, and
Deliktas
,
B.
,
2010
, “
Nonlocal Gradient-Dependent Modeling of Plasticity With Anisotropic Hardening
,”
Int. J. Plast.
,
26
(
9
), pp.
1335
1356
.10.1016/j.ijplas.2010.01.015
112.
Kuroda
,
M.
, and
Tvergaard
,
V.
,
2008
, “
On the Formulations of Higher-Order Strain Gradient Crystal Plasticity Models
,”
J. Mech. Phys. Solids
,
56
(
4
), pp.
1591
1608
.10.1016/j.jmps.2007.07.015
113.
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1992
, “
A New Bulge Test Technique for the Determination of Young Modulus and Poisson Ratio of Thin-Films
,”
J. Mater. Res.
,
7
(
12
), pp.
3242
3249
.10.1557/JMR.1992.3242
114.
Xiang
,
Y.
,
Chen
,
X.
, and
Vlassak
,
J. J.
,
2005
, “
Plane-Strain Bulge Test for Thin Films
,”
J. Mater. Res.
,
20
(
9
), pp.
2360
2370
.10.1557/jmr.2005.0313
115.
Xiang
,
Y.
,
Tsui
,
T. Y.
, and
Vlassak
,
J. J.
,
2006
, “
The Mechanical Properties of Freestanding Electroplated Cu Thin Films
,”
J. Mater. Res.
,
21
(
6
), pp.
1607
1618
.10.1557/jmr.2006.0195
116.
Nix
,
W. D
, and
Gao
,
H. J.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.10.1016/S0022-5096(97)00086-0
117.
Swadener
,
J. G.
,
George
,
E. P.
, and
Pharr
,
G. M.
,
2002
, “
The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
681
694
.10.1016/S0022-5096(01)00103-X
118.
Abu Al-Rub
,
R. K
, and
Voyiadjis
,
G. Z.
,
2004
, “
Analytical and Experimental Determination of the Material Intrinsic Length Scale of Strain Gradient Plasticity Theory From Micro- and Nano-Indentation Experiments
,”
Int. J. Plast.
,
20
(
6
), pp.
1139
1182
.10.1016/j.ijplas.2003.10.007
119.
Voyiadjis
,
G. Z
, and
Abu Al-Rub
,
R. K.
,
2005
, “
Gradient Plasticity Theory With a Variable Length Scale Parameter
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
3998
4029
.10.1016/j.ijsolstr.2004.12.010
120.
Anand
,
L.
,
Gurtin
,
M. E.
,
Lele
,
S. P.
, and
Gething
,
C.
,
2005
, “
A One-Dimensional Theory of Strain-Gradient Plasticity: Formulation, Analysis, Numerical Results
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1789
1826
.10.1016/j.jmps.2005.03.003
121.
Bauschinger
,
J.
,
1881
, “
Tension Prisma Stabe
,”
Civilingenieur
,
27
, pp.
289
301
.
122.
Yefimov
,
S.
,
Groma
,
I.
, and
Van der Giessen
,
E.
,
2004
, “
A Comparison of a Statistical-Mechanics Based Plasticity Model With Discrete DislocationPlasticity Calculations
,”
J. Mech. Phys. Solids
,
52
(
2
), pp.
279
300
.10.1016/S0022-5096(03)00094-2
123.
Ashby
,
M. F.
,
1970
, “
Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
,
21
(
170
), pp.
399
424
.10.1080/14786437008238426
124.
Voyiadjis
,
G.
, and
Abu Al-Rub
,
R. K.
,
2002
, “
Length Scales in Gradient Plasticity Theory
,” Proceedings of the IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials, Morocco, October 20–25, pp.
167
174
.
125.
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
1989
, “
Prediction of Slip Transfer Mechanisms Across Grain-Boundaries
,”
Scr. Metall.
,
23
(
5
), pp.
799
803
.10.1016/0036-9748(89)90534-6
126.
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
1990
, “
An In Situ Transmission Electron-Microscope Deformation Study of the Slip Transfer Mechanisms in Metals
,”
Metall. Trans. A
,
21
(
9
), pp.
2437
2447
.10.1007/BF02646988
127.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
,
1975
, “
Thermodynamics and Kinetics of Slip
,”
Prog. Mater. Sci.
,
19
, pp.
1
281
.10.1016/0079-6425(75)90005-5
128.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
, 2nd ed., Krieger Publishing, Malabar, FL, p.
857
.
129.
Meyers
,
M. A.
, and
Chawla
,
K. K.
,
2009
,
Mechanical Behavior of Materials
, Vol. xxii, 2nd ed.,
Cambridge University Press
,
Cambridge, New York
, p.
856
.
You do not currently have access to this content.