This paper presents a combined experimental and theoretical analysis focusing on the individual roles of microdeformation mechanisms that are simultaneously active during the deformation of twinning-induced plasticity (TWIP) steels in the presence of hydrogen. Deformation responses of hydrogen-free and hydrogen-charged TWIP steels were examined with the aid of thorough electron microscopy. Specifically, hydrogen charging promoted twinning over slip–twin interactions and reduced ductility. Based on the experimental findings, a mechanism-based microscale fracture model was proposed, and incorporated into a visco-plastic self-consistent (VPSC) model to account for the stress–strain response in the presence of hydrogen. In addition, slip-twin and slip–grain boundary interactions in TWIP steels were also incorporated into VPSC, in order to capture the deformation response of the material in the presence of hydrogen. The simulation results not only verify the success of the proposed hydrogen embrittlement (HE) mechanism for TWIP steels, but also open a venue for the utility of these superior materials in the presence of hydrogen.

References

1.
Bouaziz
,
O.
,
Allain
,
S.
,
Scott
,
C. P.
,
Cugy
,
P.
, and
Barbier
,
D.
,
2011
, “
High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships
,”
Curr. Opin. Solid State Mater. Sci.
,
15
(
4
), pp.
141
168
.
2.
Bouaziz
,
O.
,
Allain
,
S.
, and
Scott
,
C.
,
2008
, “
Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels
,”
Scr. Mater.
,
58
(
6
), pp.
484
487
.
3.
Bal
,
B.
,
Gumus
,
B.
,
Gerstein
,
G.
,
Canadinc
,
D.
, and
Maier
,
H. J.
,
2015
, “
On the Micro-Deformation Mechanisms Active in High-Manganese Austenitic Steels Under Impact Loading
,”
Mater. Sci. Eng. A
,
632
, pp.
29
34
.
4.
Gumus
,
B.
,
Bal
,
B.
,
Gerstein
,
G.
,
Canadinc
,
D.
, and
Maier
,
H. J.
,
2016
, “
Twinning Activity in High-Manganese Austenitic Steels Under High Velocity Loading
,”
Mater. Sci. Technol.
,
32
(
5
), pp.
463
465
.
5.
Rahman
,
K. M.
,
Vorontsov
,
V. A.
, and
Dye
,
D.
,
2015
, “
The Effect of Grain Size on the Twin Initiation Stress in a TWIP Steel
,”
Acta Mater.
,
89
, pp.
247
257
.
6.
Hamada
,
A. S.
,
Karjalainen
,
L. P.
, and
Puustinen
,
J.
,
2009
, “
Fatigue Behavior of High-Mn TWIP Steels
,”
Mater. Sci. Eng. A
,
517
(
1–2
), pp.
68
77
.
7.
Lee
,
S.
,
Kim
,
J.
,
Lee
,
S.-J.
, and
De Cooman
,
B. C.
,
2011
, “
Effect of Nitrogen on the Critical Strain for Dynamic Strain Aging in High-Manganese Twinning-Induced Plasticity Steel
,”
Scr. Mater.
,
65
(
6
), pp.
528
531
.
8.
Lee
,
T.
,
Koyama
,
M.
,
Tsuzaki
,
K.
,
Lee
,
Y. H.
, and
Lee
,
C. S.
,
2012
, “
Tensile Deformation Behavior of Fe-Mn-C TWIP Steel With Ultrafine Elongated Grain Structure
,”
Mater. Lett.
,
75
, pp.
169
171
.
9.
Koyama
,
M.
,
Sawaguchi
,
T.
,
Lee
,
T.
,
Lee
,
C. S.
, and
Tsuzaki
,
K.
,
2011
, “
Work Hardening Associated With ε-Martensitic Transformation, Deformation Twinning and Dynamic Strain Aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP Steels
,”
Mater. Sci. Eng. A
,
528
(
24
), pp.
7310
7316
.
10.
Gumus
,
B.
,
Bal
,
B.
,
Gerstein
,
G.
,
Canadinc
,
D.
,
Maier
,
H. J.
,
Guner
,
F.
, and
Elmadagli
,
M.
,
2015
, “
Twinning Activities in High-Mn Austenitic Steels Under High-Velocity Compressive Loading
,”
Mater. Sci. Eng. A
,
648
, pp.
104
112
.
11.
Allain
,
S.
,
Chateau
,
J.-P.
,
Bouaziz
,
O.
,
Migot
,
S.
, and
Guelton
,
N.
,
2004
, “
Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe–Mn–C Alloys
,”
Mater. Sci. Eng. A
,
387–389
, pp.
158
162
.
12.
Gutierrez-Urrutia
,
I.
, and
Raabe
,
D.
,
2011
, “
Dislocation and Twin Substructure Evolution During Strain Hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP Steel Observed by Electron Channeling Contrast Imaging
,”
Acta Mater.
,
59
(
16
), pp.
6449
6462
.
13.
Dumay
,
A.
,
Chateau
,
J.-P.
,
Allain
,
S.
,
Migot
,
S.
, and
Bouaziz
,
O.
,
2008
, “
Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe–Mn–C Steel
,”
Mater. Sci. Eng. A
,
483–484
, pp.
184
187
.
14.
Koyama
,
M.
,
Sawaguchi
,
T.
, and
Tsuzaki
,
K.
,
2013
, “
TWIP Effect and Plastic Instability Condition in an Fe-Mn-C Austenitic Steel
,”
ISIJ Int.
,
53
(
2
), pp.
323
329
.
15.
Dastur
,
Y. N.
, and
Leslie
,
W. C.
,
1981
, “
Mechanism of Work Hardening in Hadfield Manganese Steel
,”
Metall. Trans. A
,
12
(
5
), pp.
749
759
.
16.
Hamada
,
A. S.
, and
Karjalainen
,
L. P.
,
2011
, “
Hot Ductility Behaviour of High-Mn TWIP Steels
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1819
1827
.
17.
Lambers
,
H.-G.
,
Rüsing
,
C. J.
,
Niendorf
,
T.
,
Geissler
,
D.
,
Freudenberger
,
J.
, and
Maier
,
H. J.
,
2012
, “
On the Low-Cycle Fatigue Response of Pre-Strained Austenitic Fe61Mn24Ni6.5Cr8.5 Alloy Showing TWIP Effect
,”
Int. J. Fatigue
,
40
, pp.
51
60
.
18.
Frommeyer
,
G.
,
Brüx
,
U.
, and
Neumann
,
P.
,
2003
, “
Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes
,”
ISIJ Int.
,
43
(
3
), pp.
438
446
.
19.
Zhang
,
L.
,
Liu
,
X.
, and
Shu
,
K.
,
2011
, “
Microstructure and Mechanical Properties of Hot-Rolled Fe-Mn-C-Si TWIP Steel
,”
J. Iron Steel Res. Int.
,
18
(
12
), pp.
45
64
.
20.
Mittal
,
S. C.
,
Prasad
,
R. C.
, and
Deshmukh
,
M. B.
,
1994
, “
Effect of Hydrogen on Fracture of Austenitic Fe-Mn-Al Steel
,”
ISIJ Int.
,
34
(2), pp.
211
216
.
21.
Koyama
,
M.
,
Akiyama
,
E.
, and
Tsuzaki
,
K.
,
2012
, “
Effect of Hydrogen Content on the Embrittlement in a Fe-Mn-C Twinning-Induced Plasticity Steel
,”
Corros. Sci.
,
59
, pp.
277
281
.
22.
Koyama
,
M.
,
Akiyama
,
E.
,
Tsuzaki
,
K.
, and
Raabe
,
D.
,
2013
, “
Hydrogen-Assisted Failure in a Twinning-Induced Plasticity Steel Studied Under In Situ Hydrogen Charging by Electron Channeling Contrast Imaging
,”
Acta Mater.
,
61
(
12
), pp.
4607
4618
.
23.
Koyama
,
M.
,
Springer
,
H.
,
Merzlikin
,
S. V.
,
Tsuzaki
,
K.
,
Akiyama
,
E.
, and
Raabe
,
D.
,
2014
, “
Hydrogen Embrittlement Associated With Strain Localization in a Precipitation-Hardened Fe–Mn–Al–C Light Weight Austenitic Steel
,”
Int. J. Hydrogen Energy
,
39
(
9
), pp.
4634
4646
.
24.
Koyama
,
M.
,
Akiyama
,
E.
, and
Tsuzaki
,
K.
,
2012
, “
Hydrogen Embrittlement in a Fe-Mn-C Ternary Twinning-Induced Plasticity Steel
,”
Corros. Sci.
,
54
, pp.
1
4
.
25.
Park
,
I. J.
,
Jeong
,
K. H.
,
Jung
,
J. G.
,
Lee
,
C. S.
, and
Lee
,
Y. K.
,
2012
, “
The Mechanism of Enhanced Resistance to the Hydrogen Delayed Fracture in Al-Added Fe-18Mn-0.6C Twinning-Induced Plasticity Steels
,”
Int. J. Hydrogen Energy
,
37
(
12
), pp.
9925
9932
.
26.
Dieudonné
,
T.
,
Marchetti
,
L.
,
Wery
,
M.
,
Chêne
,
J.
,
Allely
,
C.
,
Cugy
,
P.
, and
Scott
,
C. P.
,
2014
, “
Role of Copper and Aluminum Additions on the Hydrogen Embrittlement Susceptibility of Austenitic Fe–Mn–C TWIP Steels
,”
Corros. Sci.
,
82
, pp.
218
226
.
27.
Kwon
,
Y. J.
,
Lee
,
T.
,
Lee
,
J.
,
Chun
,
Y. S.
, and
Lee
,
C. S.
,
2015
, “
Role of Cu on Hydrogen Embrittlement Behavior in Fe-Mn-C-Cu TWIP Steel
,”
Int. J. Hydrogen Energy
,
40
(
23
), pp.
7409
7419
.
28.
Zan
,
N.
,
Ding
,
H.
,
Guo
,
X.
,
Tang
,
Z.
, and
Bleck
,
W.
,
2015
, “
Effects of Grain Size on Hydrogen Embrittlement in a Fe-22Mn-0.6C TWIP Steel
,”
Int. J. Hydrogen Energy
,
40
(
33
), pp.
10687
10696
.
29.
Bai
,
Y.
,
Momotani
,
Y.
,
Chen
,
M. C.
,
Shibata
,
A.
, and
Tsuji
,
N.
,
2016
, “
Effect of Grain Refinement on Hydrogen Embrittlement Behaviors of High-Mn TWIP Steel
,”
Mater. Sci. Eng. A
,
651
, pp.
935
944
.
30.
Canadinc
,
D.
,
Sehitoglu
,
H.
, and
Maier
,
H. J.
,
2007
, “
The Role of Dense Dislocation Walls on the Deformation Response of Aluminum Alloyed Hadfield Steel Polycrystals
,”
Mater. Sci. Eng. A
,
454–455
, pp.
662
666
.
31.
Canadinc
,
D.
,
Biyikli
,
E.
,
Niendorf
,
T.
, and
Maier
,
H. J.
,
2011
, “
Experimental and Numerical Investigation of the Role of Grain Boundary Misorientation Angle on the Dislocation-Grain Boundary Interactions
,”
Adv. Eng. Mater.
,
13
(
4
), pp.
281
287
.
32.
Karaman
,
I.
,
Sehitoglu
,
H.
,
Beaudoin
,
A. J.
,
Chumlyakov
,
Y. I.
,
Maier
,
H. J.
, and
Tome
,
C. N.
,
2000
, “
Modeling the Deformation Behavior of Hadfield Steel Single and Polycrystals Due to Twinning and Slip
,”
Acta Mater.
,
48
(9), pp.
2031
2047
.
33.
Dancette
,
S.
,
Delannay
,
L.
,
Renard
,
K.
,
Melchior
,
M. A.
, and
Jacques
,
P. J.
,
2012
, “
Crystal Plasticity Modeling of Texture Development and Hardening in TWIP Steels
,”
Acta Mater.
,
60
(
5
), pp.
2135
2145
.
34.
Zhou
,
P.
,
Liang
,
Z. Y.
,
Liu
,
R. D.
, and
Huang
,
M. X.
,
2016
, “
Evolution of Dislocations and Twins in a Strong and Ductile Nanotwinned Steel
,”
Acta Mater.
,
111
, pp.
96
107
.
35.
Michler
,
T.
, and
Naumann
,
J.
,
2008
, “
Hydrogen Environment Embrittlement of Austenitic Stainless Steels at Low Temperatures
,”
Int. J. Hydrogen Energy
,
33
(
8
), pp.
2111
2122
.
36.
Bal
,
B.
,
Koyama
,
M.
,
Gerstein
,
G.
,
Maier
,
H. J.
, and
Tsuzaki
,
K.
,
2016
, “
Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of Twinning-Induced Plasticity Steel Pre-Charged With High-Pressure Hydrogen Gas
,”
Int. J. Hydrogen Energy
,
41
(
34
), pp.
15362
15372
.
37.
Lebensohn
,
R. A.
, and
Tomé
,
C. N.
,
1993
, “
A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys
,”
Acta Metall. Mater.
,
41
(9), pp.
2611
2624
.
38.
Canadinc
,
D.
,
Karaman
,
I.
,
Sehitoglu
,
H.
,
Chumlyakov
,
Y. I.
, and
Maier
,
H. J.
,
2003
, “
The Role of Nitrogen on the Deformation Response of Hadfield Steel Single Crystals
,”
Metall. Mater. Trans. A
,
34
(
9
), pp.
1821
1831
.
39.
Canadinc
,
D.
,
Sehitoglu
,
H.
,
Maier
,
H. J.
, and
Chumlyakov
,
Y. I.
,
2005
, “
Strain Hardening Behavior of Aluminum Alloyed Hadfield Steel Single Crystals
,”
Acta Mater.
,
53
(
6
), pp.
1831
1842
.
40.
Biyikli
,
E.
,
Canadinc
,
D.
,
Maier
,
H. J.
,
Niendorf
,
T.
, and
Top
,
S.
,
2010
, “
Three-Dimensional Modeling of the Grain Boundary Misorientation Angle Distribution Based on Two-Dimensional Experimental Texture Measurements
,”
Mater. Sci. Eng. A
,
527
(
21–22
), pp.
5604
5612
.
41.
Kocks
,
U. F.
,
Tomé
,
C. N.
, and
Wenk
,
H. R.
,
1998
,
Texture and Anisotropy
,
Cambridge University Press
,
New York
.
42.
Sofronis
,
P.
, and
Birnbaum
,
H. K.
,
1995
, “
Mechanics of the Hydrogen-Dislocation-Impurity Interactions—Part I: Increasing Shear Modulus
,”
J. Mech. Phys. Solids
,
43
(
1
), pp.
49
90
.
43.
McCormick
,
P. G.
, and
Ling
,
C. P.
,
1995
, “
Numerical Modelling of the Portevin-Le Chatelier Effect
,”
Acta Metall. Mater.
,
43
(
5
), pp.
1969
1977
.
44.
Estrin
,
Y.
, and
McCormick
,
P. G.
,
1991
, “
Modelling the Transient Flow Behaviour of Dynamic Strain Ageing Materials
,”
Acta Metall. Mater.
,
39
(
12
), pp.
2977
2983
.
45.
Soare
,
M. A.
, and
Curtin
,
W. A.
,
2008
, “
Single-Mechanism Rate Theory for Dynamic Strain Aging in fcc Metals
,”
Acta Mater.
,
56
(
15
), pp.
4091
4101
.
46.
McCormick
,
P. G.
,
1988
, “
Theory of Flow Localisation Due to Dynamic Strain Ageing
,”
Acta Metall.
,
36
(
12
), pp.
3061
3067
.
47.
Ling
,
C. P.
, and
McCormick
,
P. G.
,
1990
, “
Strain Rate Sensitivity and Transient Behaviour in an Al Mg Si Alloy
,”
Acta Metall. Mater.
,
38
(12), pp.
2631
2635
.
48.
Bal
,
B.
,
Gumus
,
B.
, and
Canadinc
,
D.
,
2016
, “
Incorporation of Dynamic Strain Aging Into a Viscoplastic Self-Consistent Model for Predicting the Negative Strain Rate Sensitivity of Hadfield Steel
,”
J. Eng. Mater. Technol.
,
138
(
3
), p. 031012.
49.
Soare
,
M. A.
, and
Curtin
,
W. A.
,
2008
, “
Solute Strengthening of Both Mobile and Forest Dislocations: The Origin of Dynamic Strain Aging in fcc Metals
,”
Acta Mater.
,
56
(
15
), pp.
4046
4061
.
50.
Anjabin
,
N.
,
Karimi Taheri
,
A.
, and
Kim
,
H. S.
,
2013
, “
Simulation and Experimental Analyses of Dynamic Strain Aging of a Supersaturated Age Hardenable Aluminum Alloy
,”
Mater. Sci. Eng. A
,
585
, pp.
165
173
.
51.
Narayanan
,
S.
,
McDowell
,
D. L.
, and
Zhu
,
T.
,
2014
, “
Crystal Plasticity Model for BCC Iron Atomistically Informed by Kinetics of Correlated Kinkpair Nucleation on Screw Dislocation
,”
J. Mech. Phys. Solids
,
65
, pp.
54
68
.
52.
Kang
,
K.
,
Yin
,
J.
, and
Cai
,
W.
,
2014
, “
Stress Dependence of Cross Slip Energy Barrier for Face-Centered Cubic Nickel
,”
J. Mech. Phys. Solids
,
62
, pp.
181
193
.
53.
Springer
,
F.
,
Nortmann
,
A.
, and
Schwing
,
C.
,
1998
, “
A Study of Basic Processes Characterizing Dynamic Strain Ageing
,”
Phys. Status Solidi A
,
170
(1), pp.
63
81
.
54.
Ono
,
K.
,
1968
, “
Temperature Dependence of Dispersed Barrier Hardening
,”
J. Appl. Phys.
,
39
(3), pp.
1803
1806
.
55.
Bayley
,
C. J.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
2006
, “
A Comparison of Dislocation Induced Back Stress Formulations in Strain Gradient Crystal Plasticity
,”
Int. J. Solids Struct.
,
43
(
24
), pp.
7268
7286
.
You do not currently have access to this content.