Carbon nanotube (CNT)-based conductors are the focus of considerable ongoing experimental research, which has demonstrated their potential to offer increased current carrying capacity or higher specific conductance, as compared to conventional copper cabling. Complementary analytical research has been hindered by the high computational cost of large-scale quantum models. The introduction of certain simplifying assumptions, supported by critical comparisons to exact solutions and the published literature, allows for quantum modeling work to assist experiment in composite conductor development. Ballistic conductance calculations may be used to identify structure–property relationships and suggest the most productive avenues for future nanocomposite conductor research.

References

1.
Wernik
,
J. M.
, and
Meguid
,
S. A.
,
2010
, “
Recent Developments in Multifunctional Nanocomposites Using Carbon Nanotubes
,”
ASME Appl. Mech. Rev.
,
63
(
5
), p.
50801
.
2.
Volder
,
M. F. L. D.
,
Tawfick
,
S. H.
,
Baughman
,
R. H.
, and
Hart
,
A. J.
,
2013
, “
Carbon Nanotubes: Present and Future Commercial Applications
,”
Science
,
339
(
6119
), pp.
535
539
.
3.
Wang
,
X.
,
Behabtu
,
N.
,
Young
,
C. C.
,
Tsentalovich
,
D. E.
,
Pasquali
,
M.
, and
Kono
,
J.
,
2014
, “
High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes
,”
Adv. Funct. Mater.
,
24
(
21
), pp.
3241
3249
.
4.
Subramaniam
,
C.
, Yamada, T., Kobashi, K., Sekiguchi, A., Futaba, D. N., Yumura, M., and Hata, K.,
2013
, “
One Hundred Fold Increase in Current Carrying Capacity in a Carbon Nanotube-Copper Composite
,”
Nat. Commun.
,
4
, p.
2202
.
5.
Zhao
,
Y.
,
Wei
,
J.
,
Vajtai
,
R.
,
Ajayan
,
P. M.
, and
Barrera
,
E. V.
,
2011
, “
Iodine Doped Carbon Nanotube Cables Exceeding Specific Electrical Conductivity of Metals
,”
Sci. Rep.
,
1
, p.
83
.
6.
Meguid
,
W. S. B.
,
Meguid
,
S. A.
,
Zhu
,
Z. H.
, and
J
,
M.
,
2011
, “
Modeling Electrical Conductivities of Nanocomposites With Aligned Carbon Nanotubes
,”
Nanotechnol.
,
22
(
48
), p.
485704
.
7.
Sundaram, R., Yamada, T., Hata, K., and Sekiguchi, A., 2017, “
Electrical Performance of Lightweight CNT-Cu Composite Wires Impacted by Surface and Internal Cu Spatial Distribution
,”
Sci. Rep.
,
7
, p. 9267.
8.
Yang
,
C.
,
2013
, “First Principle Studies of Cu-Carbon Nanotube Hybrid Structures With Emphasis on the Electronic Structures and the Transport Properties,”
Ph.D. thesis
, University of Central Florida, Orlando, FL.
9.
Ghorbani-Asl
,
M.
,
Bristowe
,
P. D.
, and
Koziol
,
K.
,
2015
, “
A Computational Study of the Quantum Transport Properties of a Cu-CNT Composite
,”
Phys. Chem. Chem. Phys.
,
17
(
28
), pp.
18273
18277
.
10.
Behabtu
,
N.
,
Young
,
C. C.
,
Tsentalovich
,
D. E.
,
Kleinerman
,
O.
,
Wang
,
X.
,
Ma
,
A. W. K.
,
Bengio
,
E. A.
,
ter Waarbeek
,
R. F.
,
de Jong
,
J. J.
,
Hoogerwerf
,
R. E.
,
Fairchild
,
S. B.
,
Ferguson
,
J. B.
,
Maruyama
,
B.
,
Kono
,
J.
,
Talmon
,
Y.
,
Cohen
,
Y.
,
Otto
,
M. J.
, and
Pasquali
,
M.
,
2013
, “
Strong, Light, Multifunctional Fibers of Carbon Nanotubes With Ultrahigh Conductivity
,”
Science
,
339
(
6116
), pp.
182
186
.
11.
Wang
,
J. N.
,
Luo
,
X. G.
,
Wu
,
T.
, and
Chen
,
Y.
,
2014
, “
High-Strength Carbon Nanotube Fibre-Like Ribbon With High Ductility and High Electrical Conductivity
,”
Nat. Commun.
,
5
(
2005
), p.
3848
.
12.
Lopez-Bezanilla
,
A.
,
2013
, “
Electronic Transport Properties of Chemically Modified Double-Walled Carbon Nanotubes
,”
J. Phys. Chem. C
,
117
(
29
), pp.
15266
15271
.
13.
Yang
,
C.
, and
Chen
,
Q.
,
2013
, “
Electronic Structure and Transport Properties of Carbon Nanotube Adsorbed With a Copper Chain
,”
Int. J. Smart Nano Mater.
,
4
(
3
), pp.
143
149
.
14.
Du
,
X.
,
Chen
,
Z.
,
Zhang
,
J.
,
Yao
,
C.-S.
,
Chen
,
C.
, and
Fan
,
X.-L.
,
2012
, “
Structural and Electronic Properties of Conducting Cu Nanowire Encapsulated in Semiconducting Zigzag Carbon Nanotubes: A First-Principles Study
,”
Phys. Status Solidi B
,
249
(
5
), pp.
1033
1038
.
15.
Yan
,
Q.
,
Wu
,
J.
,
Zhou
,
G.
,
Duan
,
W.
, and
Gu
,
B.-L.
,
2005
, “
Ab Initio Study of Transport Properties of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
72
(
15
), p.
155425
.
16.
Moradian
,
R.
,
Azadi1
,
S.
, and
Refii-tabar
,
H.
,
2007
, “
When Double-Wall Carbon Nanotubes Can Become Metallic or Semiconducting
,”
J. Phys.: Condens. Matter
,
19
(
17
), p.
176209
.
17.
Soto
,
M.
,
Boyer
,
T. A.
,
Biradar
,
S.
,
Ge
,
L.
,
Vajtai
,
R.
,
Elías-Zúñiga
,
A.
,
Ajayan
,
P. M.
, and
Barrera
,
E. V.
,
2015
, “
Effect of Interwall Interaction on the Electronic Structure of Double-Walled Carbon Nanotubes
,”
Nanotechnol.
,
26
(
16
), p.
165201
.
18.
Li
,
E. Y.
, and
Marzari
,
N.
,
2011
, “
Improving the Electrical Conductivity of Carbon Nanotube Networks: A First-Principles Study
,”
ACS Nano
,
5
(
12
), pp.
9726
9736
.
19.
Buia
,
C.
,
Buldum
,
A.
, and
Lu
,
J. P.
,
2003
, “
Quantum Interference Effects in Electronic Transport Through Nanotube Contacts
,”
Phys. Rev. B
,
67
(
11
), pp.
113409
113412
.
20.
Xu
,
F.
,
Sadrzadeh
,
A.
,
Xu
,
Z.
, and
Yakobson
,
B. I.
,
2013
, “
Can Carbon Nanotube Fibers Achieve the Ultimate Conductivity?—Coupled-Mode Analysis for Electron Transport Through the Carbon Nanotube Contact
,”
J. Appl. Phys.
,
114
(
6
), p. 063714.
21.
Buldum
,
A.
, and
Lu
,
J. P.
,
2001
, “
Contact Resistance Between Carbon Nanotubes
,”
Phys. Rev. B
,
63
(
16
), p.
161403
.
22.
Fuhrer
,
P. L. M. S.
,
Nygård
,
J.
,
Shih
,
L.
,
Forero
,
M.
,
Yoon
,
Y.-G.
,
Mazzoni
,
M. S. C.
,
Choi
,
H. J.
,
Ihm
,
J.
,
Louie
,
S. G.
,
Zettl
.,
A.
, and
McEuen
,
2000
, “
Crossed Nanotube Junctions
,”
Science
,
288
(
5465
), pp.
494
497
.
23.
Soler
,
J. M.
,
Artacho
,
E.
,
Gale
,
J. D.
,
García
,
A.
,
Junquera
,
J.
,
Ordejón
,
P.
, and
Sánchez-Portal
,
D.
,
2002
, “
The SIESTA Method for Ab Initio Order- N Materials Simulation
,”
J. Phys. Condens. Matter
,
14
(
11
), p.
2745
.
24.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1996
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
(
18
), pp.
3865
3868
.
25.
Nguyen
,
C. V.
,
Hieu
,
N. N.
, and
Nguyen
,
D. T.
,
2015
, “
Dispersion-Corrected Density Functional Theory Investigations of Structural and Electronic Properties of Bulk MoS2: Effect of Uniaxial Strain
,”
Nanoscale Res. Lett.
,
10
, p.
433
.
26.
Grimme
,
S.
,
2011
, “
Density Functional Theory With London Dispersion Corrections
,”
WIREs Comput. Mol. Sci.
,
1
(
2
), pp.
211
228
.
27.
Matsuda
,
Y.
,
Tahir-Kheli
,
J.
, and
Goddard
,
W. A.
, III
,
2010
, “
Definitive Band Gaps for Single-Wall Carbon Nanotubes
,”
J. Phys. Chem. Lett.
,
1
(
19
), pp.
2946
2950
.
28.
Pack
,
J. D.
, and
Monkhorst
,
H. J.
,
1976
, “
Special Points for Brillouin-Zone Integrations
,”
Phys. Rev. B
,
13
(
12
), pp.
5188
5192
.
29.
Datta
,
S.
,
2000
, “
Nanoscale Device Modeling: The Green's Function Method
,”
Superlattices Microstruct.
,
28
(
4
), pp.
253
278
.
30.
Imry
,
Y.
, and
Landauer
,
R.
,
1999
, “
Conductance Viewed as Transmission
,”
Rev. Mod. Phys.
,
71
(
2
), pp.
S306
S312
.
31.
Band
,
Y. B.
, and
Avishai
,
Y.
,
2012
,
Quantum Mechanics With Applications to Nanotechnology and Information Science
, 1st ed.,
Elsevier
, Amsterdam, The Netherlands.
32.
Kong
,
J.
,
Yenilmez
,
E.
,
Tombler
,
T. W.
,
Kim
,
W.
,
Dai
,
H.
,
Laughlin
,
R. B.
,
Liu
,
L.
,
Jayanthi
,
C. S.
, and
Wu
,
S. Y.
,
2001
, “
Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides
,”
Phys. Rev. Lett.
,
87
(
10
), p.
106801
.
33.
Stokbro
,
K.
,
Taylor
,
J.
,
Brandbyge
,
M.
, and
Ordejón
,
P.
,
2003
, “
TranSIESTA: A Spice for Molecular Electronics
,”
Ann. N. Y. Acad. Sci.
,
1006
, pp.
212
226
.
34.
Song
,
W.
,
Ni
,
M.
,
Lu
,
J.
,
Gao
,
Z.
,
Nagase
,
S.
,
Yu
,
D.
,
Ye
,
H.
, and
Zhang
,
X.
,
2005
, “
Electronic Structures of Semiconducting Double-Walled Carbon Nanotubes: Important Effect of Interlay Interaction
,”
Chem. Phys. Lett.
,
414
(
4–6
), pp.
429
433
.
35.
Monthioux
,
M.
,
2012
, “
Introduction to Carbon Nanotubes
,” Carbon Meta-Nanotubes: Synthesis, Properties and Applications, 1st ed., Wiley, Hoboken, NJ.
36.
Pollack
,
A.
,
Alnemrat
,
S.
,
Chamberlain
,
T. W.
,
Khlobystov
,
A. N.
,
Hooper
,
J. P.
, and
Osswald
,
S.
,
2014
, “
Electronic Property Modification of Single-Walled Carbon Nanotubes by Encapsulation of Sulfur-Terminated Graphene Nanoribbons
,”
Small
,
10
(
24
), pp.
5077
5086
.
37.
Ouyang
,
M.
,
Huang
,
J.-L.
,
Cheung
,
C. L.
, and
Lieber
,
C. M.
,
2001
, “
Energy Gaps in ‘Metallic’ Single-Walled Carbon Nanotubes
,”
Science
,
292
(
5517
), pp.
702
705
.
38.
Blase
,
X.
,
Benedict
,
L. X.
,
Shirley
,
E. L.
, and
Louie
,
S. G.
,
1994
, “
Hybridization Effects and Metallicity in Small Radius Carbon Nanotubes
,”
Phys. Rev. Lett.
,
72
(
12
), pp.
1878
1881
.
39.
Zólyomi
,
V.
, and
Kürti
,
J.
,
2004
, “
First-Principles Calculations for the Electronic Band Structures of Small Diameter Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
70
(
8
), p.
085403
.
40.
Abadir
,
G. B.
,
Walus
,
K.
, and
Pulfrey
,
D. L.
,
2009
, “
Basis-Set Choice for DFT/NEGF Simulations of Carbon Nanotubes
,”
J. Comput. Electron.
,
8
(
1
), pp.
1
9
.
41.
Ouyang
,
M.
,
Huang
,
J.-L.
, and
Lieber
,
C. M.
,
2002
, “
Scanning Tunneling Microscopy Studies of the One-Dimensional Electronic Properties of Single-Walled Carbon Nanotubes
,”
Annu. Rev. Phys. Chem.
,
53
, pp.
201
220
.
42.
Lu
,
X.
, and
Chen
,
Z.
,
2005
, “
Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes
,”
Chem. Rev.
,
105
(
10
), pp. 3643–3696.
43.
Yan
,
L.
,
Rotkin
,
S. V.
, and
Ravaioli
,
U.
,
2003
, “
Electronic Response and Bandstructure Modulation of Carbon Nanotubes in a Transverse Electrical Field
,”
Nano Lett.
,
3
(
2
), pp.
183
187
.
44.
Wan
,
R.
,
Peng
,
J.-h.
,
Zhang
,
X.
, and
Leng
,
C.
,
2013
, “
Band Gaps and Radii of Metallic Zigzag Single Wall Carbon Nanotubes
,”
Phys. B
,
417
, pp.
1
3
.
45.
Li
,
Y.
,
2017
, “Ab Initio Study of Carbon Nanotube Based Conductors,”
M.S. thesis
, University of Texas at Austin, Austin, TX.
46.
Baskin
,
Y.
, and
Meyer
,
L.
,
1955
, “
Lattice Constants of Graphite at Low Temperatures
,”
Phys. Rev.
,
100
(
2
), p.
544
.
47.
Moore
,
K. E.
,
Tune
,
D. D.
, and
Flavel
,
B. S.
,
2015
, “
Double-Walled Carbon Nanotube Processing
,”
Adv. Mater.
,
27
(
20
), pp.
3105
3137
.
48.
Liu
,
K.
,
Jin
,
C.
,
Hong
,
X.
,
Kim
,
J.
,
Zettl
,
A.
,
Wang
,
E.
, and
Wang
,
F.
,
2014
, “
Van Der Waals-Coupled Electronic States in Incommensurate Double-Walled Carbon Nanotubes
,”
Nat. Phys.
,
10
(
10
), pp.
737
742
.
49.
Hanaoka
,
Y.
,
Hinode
,
K.
,
Takeda
,
K.
, and
Kodama
,
D.
,
2002
, “
Increase in Electrical Resistivity of Copper and Aluminum Fine Lines
,”
Mater. Trans.
,
43
(
7
), pp.
1621
1623
.
50.
Park
,
J. Y.
,
Rosenblatt
,
S.
,
Yaish
,
Y.
,
Sazonova
,
V.
,
Üstünel
,
H.
,
Braig
,
S.
,
Arias
,
T. A.
,
Brouwer
,
P. W.
, and
McEuen
,
P. L.
,
2004
, “
Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes
,”
Nano Lett.
,
4
(
3
), pp.
517
520
.
51.
Mann
,
D.
,
Javey
,
A.
,
Kong
,
J.
,
Wang
,
Q.
, and
Dai
,
H.
,
2003
, “
Ballistic Transport in Metallic Nanotubes With Reliable Pd Ohmic Contacts
,”
Nano Lett.
,
3
(
11
), pp.
1541
1544
.
52.
Berger
,
C.
,
Ponchral
,
P.
, and
De Heer
,
W.
, “
Ballistic Conduction in Multiwalled Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
3
(
1–2
), pp.
171
177
.
53.
Janas
,
D.
,
Herman
,
A. P.
,
Boncel
,
S.
, and
Koziol
,
K. K. K.
,
2014
, “
Iodine Monochloride as a Powerful Enhancer of Electrical Conductivity of Carbon Nanotube Wires
,”
Carbon N. Y.
,
73
, pp.
225
233
.
54.
Janas
,
D.
,
Milowska
,
K. Z.
,
Bristowe
,
P.
, and
Koziol
,
K.
,
2017
, “
Improving the Electrical Properties of Carbon Nanotubes With Interhalogen Compounds
,”
Nanoscale
,
9
(
9
), pp.
3212
3221
.
55.
Ruiz-Serrano
,
Á.
, and
Skylaris
,
C.-K.
,
2013
, “
A Variational Method for Density Functional Theory Calculations on Metallic Systems With Thousands of Atoms
,”
J. Chem. Phys.
,
139
, p.
054107
.
You do not currently have access to this content.