Abstract

In this study, a neural network is trained to predict the response of a viscoplastic solder alloy based on a reduced data set. The model is shown to accurately describe the behavior of the material for the temperature range from 298 °K to 398 °K and the strain rate range from 2 × 10−5 s−1 to 2 × 10−2 s−1. The model is then implemented in the form of a user subroutine in the finite element code Abaqus to be used for simulations of the material behavior. The implementation requires that the weights and biases of the network are extracted and that its gradients (derivatives of the output with respect to the inputs) are calculated to be passed on to the user subroutine. Finite element (FE) simulations based on the implemented neural network are compared with those based on the physical viscoplastic model of Anand, showing an overall good agreement between both approaches. However, some limitations concerning the neural network ability to predict the transient effects during a strain rate jump or a temperature change are identified and discussed.

References

1.
Plumbridge
,
W. J.
,
1996
, “
Solders in Electronics
,”
J. Mater. Sci.
,
31
(
10
), pp.
2501
2514
.
2.
Abtew
,
M.
, and
Selvaduray
,
G.
,
2000
, “
Lead-Free Solders in Microelectronics
,”
Mater. Sci. Eng., R
,
27
(
5–6
), pp.
95
141
.
3.
Hwang
,
J.
,
2004
,
Implementing Lead-Free Electronics
,
McGraw-Hill
,
New York
.
4.
Collins
,
M. N.
,
Dalton
,
E.
, and
Punch
,
J.
,
2016
, “
Microstructural Influences on Thermomechanical Fatigue Behaviour of Third Generation High Ag Content Pb-Free Solder Alloys
,”
J. Alloys Compd.
,
688
, pp.
164
170
.
5.
Le
,
V. N.
,
Benabou
,
L.
,
Tao
,
Q. B.
, and
Etgens
,
V.
,
2017
, “
Modeling of Intergranular Thermal Fatigue Cracking of a Lead-Free Solder Joint in a Power Electronic Module
,”
Int. J. Solids Struct.
,
106–107
, pp.
1
12
.
6.
Benabou
,
L.
,
Vivet
,
L.
,
Tao
,
Q. B.
, and
Tran
,
N. H.
,
2018
, “
Microstructural Effects of Isothermal Aging on a Doped SAC Solder Alloy
,”
Int. J. Mater. Res.
,
109
(
1
), pp.
76
82
.
7.
Anand
,
L.
,
1985
, “
Constitutive Equations for Hot-Working of Metals
,”
Int. J. Plast.
,
1
(
3
), pp.
213
231
.
8.
Semiatin
,
S. L.
, and
Jonas
,
J. J.
,
1984
,
Formability and Workability of Metals: Plastic Instability and Flow Localization
,
American Society for Metals
,
Metals Park, OH
.
9.
Sellars
,
C. M.
, and
Tegart
,
W.
,
1972
, “
Hot Workability
,”
Int. Met. Rev.
,
17
(
1
), pp.
1
24
.
10.
Koric
,
S.
, and
Thomas
,
B. G.
,
2008
, “
Thermo-mechanical Models of Steel Solidification Based on Two Elastic Visco-plastic Constitutive Law
,”
J. Mater. Process. Technol.
,
197
(
1–3
), pp.
408
418
.
11.
Huber
,
N.
, and
Tsakmakis
,
C.
,
2001
, “
A Neural Network Tool for Identifying the Material Parameters of a Finite Deformation Viscoplasticity Model With Static Recovery
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
3–5
), pp.
353
384
.
12.
Mahmoudi
,
A. H.
, and
Nourbakhsh
,
S. H.
,
2011
, “
A Neural Networks Approach to Characterize Material Properties Using the Spherical Indentation Test
,”
Procedia Eng.
,
10
, pp.
3062
3067
.
13.
Jenab
,
A.
,
Karimi Taheri
,
A.
, and
Jenab
,
K.
,
2013
, “
The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates
,”
J. Mater. Eng. Perform.
,
22
(
3
), pp.
903
910
.
14.
Jenab
,
A.
,
Sari Sarraf
,
I.
,
Green
,
D. E.
,
Rahmaan
,
T.
, and
Worswick
,
M. J.
,
2016
, “
The Use of Genetic Algorithm and Neural Network to Predict Rate-Dependent Tensile Flow Behaviour of AA5182-O Sheets
,”
Mater. Des.
,
94
, pp.
262
273
.
15.
Hashash
,
Y. M. A.
,
Jung
,
S.
, and
Ghaboussi
,
J.
,
2004
, “
Numerical Implementation of a Neural Network Based Material Model in Finite Element Analysis
,”
Int. J. Numer. Methods Eng.
,
59
(
7
), pp.
989
1005
.
16.
Stoffel
,
M.
,
Barner
,
F.
, and
Markert
,
B.
,
2018
, “
Artificial Neural Networks and Intelligent Finite Elements in Non-linear Structural Mechanics
,”
Thin-Walled Struct.
,
131
, pp.
102
106
.
17.
Stoffel
,
M.
,
Bamer
,
F.
, and
Markert
,
B.
,
2019
, “
Neural Network Based Constitutive Modeling of Nonlinear Viscoplastic Structural Response
,”
Mech. Res. Commun.
,
95
, pp.
85
88
.
18.
Koeppe
,
A.
,
Bamer
,
F.
, and
Markert
,
B.
,
2019
, “
An Efficient Monte Carlo Strategy for Elasto-plastic Structures Based on Recurrent Neural Networks
,”
Acta Mech.
,
230
(
9
), pp.
3279
3293
.
19.
Stoffel
,
M.
,
Bamer
,
F.
, and
Markert
,
B.
,
2020
, “
Deep Convolutional Neural Networks in Structural Dynamics Under Consideration of Viscoplastic Material Behaviour
,”
Mech. Res. Commun.
,
108
, p.
103565
.
20.
Koeppe
,
A.
,
Bamer
,
F.
, and
Markert
,
B.
,
2020
, “
An Intelligent Nonlinear Meta Element for Elastoplastic Continua: Deep Learning Using a New Time-Distributed Residual U-Net Architecture
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113088
.
21.
Jung
,
S.
, and
Ghaboussi
,
J.
,
2006
, “
Neural Network Constitutive Model for Rate-Dependent Materials
,”
Comput. Struct.
,
84
(
15–16
), pp.
955
963
.
22.
Settgast
,
C.
,
Abendroth
,
M.
, and
Kuna
,
M.
,
2019
, “
Constitutive Modeling of Plastic Deformation Behavior of Open-Cell Foam Structures Using Neural Networks
,”
Mech. Mater.
,
131
, pp.
1
10
.
23.
Stoffel
,
M.
,
Gulakala
,
R.
,
Bamer
,
F.
, and
Markert
,
B.
,
2020
, “
Artificial Neural Networks in Structural Dynamics: A New Modular Radial Basis Function Approach vs. Convolutional and Feedforward Topologies
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112989
.
24.
Tao
,
Q. B.
,
Benabou
,
L.
,
Le
,
V. N.
,
Hwang
,
H.
, and
Luu
,
D. B.
,
2017
, “
Viscoplastic Characterization and Post-rupture Microanalysis of a Novel Lead-Free Solder With Small Additions of Bi, Sb and Ni
,”
J. Alloys Compd.
,
694
, pp.
892
904
.
25.
Kapoor
,
R.
,
Pal
,
D.
, and
Chakravartty
,
J. K.
,
2005
, “
Use of Artificial Neural Networks to Predict the Deformation Behavior of Zr-2.5Nb-0.5Cu
,”
J. Mater. Process. Technol.
,
169
(
2
), pp.
199
205
.
26.
Lin
,
Y. C.
,
Zhang
,
J.
, and
Zhong
,
J.
,
2008
, “
Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel
,”
Comput. Mater. Sci.
,
43
(
4
), pp.
752
758
.
27.
Du
,
K. L.
, and
Swamy
,
M. N. S.
,
2006
,
Neural Networks in a Soft Computing Framework
,
Springer-Verlag
,
London
.
28.
Matlab
,
2018
,
9.7.0.1190202 (R2019b), The MathWorks Inc., Natick, MA
.
29.
Abaqus/Standard User’s Manual. Version 6.12, Dassault Systèmes Simulia, Providence, RI
.
30.
Mozaffar
,
M.
,
Bostanabad
,
R.
,
Chen
,
W.
,
Ehmann
,
K.
,
Cao
,
J.
, and
Bessa
,
M. A.
,
2019
, “
Deep Learning Predicts Path-Dependent Plasticity
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
52
), pp.
26414
26420
.
31.
Abueidda
,
D. W.
,
Koric
,
S.
,
Sobh
,
N. A.
, and
Sehitoglu
,
H.
,
2021
, “
Deep Learning for Plasticity and Thermo-viscoplasticity
,”
Int. J. Plast.
,
136
, p.
102852
.
You do not currently have access to this content.