Abstract
Many metals and alloys have a stress exponent for the creep rate that is considerably higher than the value of three that is typically predicted by creep recovery models. One example is pure Ni. Creep data from Norman and Duran that are analyzed in the paper give a stress exponent of about seven in the temperature range 0.3–0.55 of the melting point. It has recently been shown that the high creep exponent of Al and Cu in the power-law breakdown regime can be explained by the presence of strain-induced vacancies. By applying a creep recovery model that does not involve adjustable parameters, it is shown that strain-induced vacancies can also explain the high-stress exponent of pure nickel.
Issue Section:
Research Papers
References
1.
Lagneborg
, R.
, 1972
, “Dislocation Mechanisms in Creep
,” Int. Metall. Rev.
, 17
(1
), pp. 130
–146
. 2.
Straub
, S.
, and Blum
, W.
, 1990
, “Does the “Natural” Third Power Law of Steady State Creep Hold for Pure Aluminium?
,” Scr. Metall. Mater.
, 24
(10
), pp. 1837
–1842
. 3.
Sherby
, O. D.
, and Burke
, P. M.
, 1968
, “Mechanical Behavior of Crystalline Solids at Elevated Temperature
,” Prog. Mater. Sci.
, 13
, pp. 323
–390
. 4.
Kloc
, L.
, Sklenička
, V.
, and Ventruba
, J.
, 2001
, “Comparison of Low Stress Creep Properties of Ferritic and Austenitic Creep Resistant Steels
,” Mater. Sci. Eng. A
, 319–321
, pp. 774
–778
. 5.
Kloc
, L.
, Dymáček
, P.
, and Sklenička
, V.
, 2018
, “High Temperature Creep of Sanicro 25 Austenitic Steel at Low Stresses
,” Mater. Sci. Eng. A
, 722
, pp. 88
–92
. 6.
Norman
, E. C.
, and Duran
, S. A.
, 1970
, “Steady-State Creep of Pure Polycrystalline Nickel From 0.3 to 0.55 Tm
,” Acta Metall.
, 18
(6
), pp. 723
–731
. 7.
Sandström
, R.
, 2012
, “Basic Model for Primary and Secondary Creep in Copper
,” Acta Mater
, 60
(1
), pp. 314
–322
. 8.
Sandström
, R.
, 2017
, “Fundamental Models for the Creep of Metals, ” Creep
, T.
Tanski
, M.
Sroka
, and A.
Zielinski
, eds., IntechOpen
.9.
Hirth
, J. P.
, and Lothe
, J.
, 1982
, Theory of Dislocations
, Wiley
, New York
.10.
Mecking
, H.
, and Estrin
, Y.
, 1980
, “The Effect of Vacancy Generation on Plastic Deformation
,” Scr. Metall.
, 14
(7
), pp. 815
–819
. 11.
Spigarelli
, S.
, and Sandström
, R.
, 2018
, “Basic Creep Modelling of Aluminium
,” Mater. Sci. Eng. A
, 711
, pp. 343
–349
. 12.
Sandström
, R.
, and Andersson
, H. C. M.
, 2008
, “Creep in Phosphorus Alloyed Copper During Power-Law Breakdown
,” J. Nucl. Mater.
, 372
(1
), pp. 76
–88
. 13.
Sandström
, R.
, and Hallgren
, J.
, 2012
, “The Role of Creep in Stress Strain Curves for Copper
,” J. Nucl. Mater.
, 422
(1–3
), pp. 51
–57
. 14.
Argon
, A. S.
, and Moffatt
, W. C.
, 1981
, “Climb of Extended Edge Dislocations
,” Acta Metall.
, 29
(2
), pp. 293
–299
. 15.
Sui
, F.
, and Sandström
, R.
, 2018
, “Basic Modelling of Tertiary Creep of Copper
,” J. Mater. Sci.
, 53
, pp. 6850
–6863
. 16.
Korzhavyi
, P. A.
, and Sandström
, R.
, 2015
, “First-principles Evaluation of the Effect of Alloying Elements on the Lattice Parameter of a 23Cr25NiWCuCo Austenitic Stainless Steel to Model Solid Solution Hardening Contribution to the Creep Strength
,” Mater. Sci. Eng. A
, 626
, pp. 213
–219
. 17.
Sui
, F.
, and Sandström
, R.
, 2019
, “Creep Strength Contribution due to Precipitation Hardening in Copper–Cobalt Alloys
,” J. Mater. Sci.
, 54
(2
), pp. 1819
–1830
. 18.
He
, J.
, and Sandström
, R.
, 2017
, “Basic Modelling of Creep Rupture in Austenitic Stainless Steels
,” Theor. Appl. Fract. Mec.
, 89
, pp. 139
–146
. 19.
Vujic
, S.
, Sandström
, R.
, and Sommitsch
, C.
, 2015
, “Precipitation Evolution and Creep Strength Modelling of 25Cr20NiNbN Austenitic Steel
,” Mater. High Temp.
, 32
(6
), pp. 607
–618
. 20.
Ruano
, O. A.
, Miller
, A. K.
, and Sherby
, O. D.
, 1981
, “Influence of Pipe Diffusion on the Creep of Fine-Grained Materials
,” Mater. Sci. Eng.
, 51
(1
), pp. 9
–16
. 21.
Blum
, W.
, and Reppich
, B.
, 1985
, “Creep of Particle-Strengthened Alloys,” Proceedings of the Creep Behaviour of Crystalline Solids
, B.
Wishire
and R. W.
Evans
, ed., Swansea, UK
, Pineridge Press
, p. 83
.22.
Arzt
, E.
, and Ashby
, M. F.
, 1982
, “Threshold Stresses in Materials Containing Dispersed Particles
,” Scr. Metall.
, 16
(11
), pp. 1285
–1290
. 23.
Nardone
, V. C.
, and Tien
, J. K.
, 1983
, “Pinning of Dislocations on the Departure Side of Strengthening Dispersoids
,” Scr. Metall.
, 17
(4
), pp. 467
–470
. 24.
Schröder
, J. H.
, and Arzt
, E.
, 1985
, “Weak Beam Studies of Dislocation/Dispersoid Interaction in an Ods Superalloy
,” Scr. Metall.
, 19
(9
), pp. 1129
–1134
. 25.
Huang
, J.
, Meyer
, M.
, and Pontikis
, V.
, 1989
, “Is Pipe Diffusion in Metals Vacancy Controlled? A Molecular Dynamics Study of an Edge Dislocation in Copper
,” Phys. Rev. Lett.
, 63
(6
), pp. 628
–631
. 26.
Purja Pun
, G. P.
, and Mishin
, Y.
, 2009
, “A Molecular Dynamics Study of Self-diffusion in the Cores of Screw and Edge Dislocations in Aluminum
,” Acta Mater.
, 57
(18
), pp. 5531
–5542
. 27.
Soltani
, S.
, Abdolrahim
, N.
, and Sepehrband
, P.
, 2018
, “Mechanism of Intrinsic Diffusion in the Core of Screw Dislocations in FCC Metals—A Molecular Dynamics Study
,” Comput. Mater. Sci.
, 144
, pp. 50
–55
. 28.
Campbell
, C. E.
, Boettinger
, W. J.
, and Kattner
, U. R.
, 2002
, “Development of a Diffusion Mobility Database for Ni-Base Superalloys
,” Acta Mater.
, 50
(4
), pp. 775
–792
. 29.
Ledbetter
, H. M.
, and Reed
, R. P.
, 1973
, “Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys
,” J. Phys. Chem. Ref. Data
, 2
(3
), pp. 531
–618
. 30.
Tiearney
, T. C.
, and Grant
, N. J.
, 1982
, “Measurement of Structural Parameters Important in Creep of Ni-Mo and Ni-W Solid Solutions
,” Metall. Trans. A
, 13
(10
), pp. 1827
–1836
. 31.
Mishima
, Y.
, Ochiai
, S.
, and Suzuki
, T.
, 1985
, “Lattice Parameters of Ni(γ), Ni3Al(γ') and Ni3Ga(γ') Solid Solutions With Additions of Transition and B-Subgroup Elements
,” Acta Metall.
, 33
(6
), pp. 1161
–1169
. 32.
Johnson
, W. R.
, Barrett
, C. R.
, and Nix
, W. D.
, 1972
, “The High-Temperature Creep Behavior of Nickel-Rich Ni-W Solid Solutions
,” Metall. Mater. Trans. B
, 3
(4
), pp. 963
–969
. 33.
Amodeo
, R. J.
, and Ghoniem
, N. M.
, 1988
, “Review of Experimental Observations and Theoretical Models of Dislocation Cells and Subgrains
,” Res Mech.
, 23
(2–3
), pp. 137
–160
.34.
Dieter
, G. E.
, and Bacon
, D. J.
, 1986
, Mechanical Metallurgy
, McGraw-Hill
, New York
.Copyright © 2021 by ASME
You do not currently have access to this content.