Abstract

Many metals and alloys have a stress exponent for the creep rate that is considerably higher than the value of three that is typically predicted by creep recovery models. One example is pure Ni. Creep data from Norman and Duran that are analyzed in the paper give a stress exponent of about seven in the temperature range 0.3–0.55 of the melting point. It has recently been shown that the high creep exponent of Al and Cu in the power-law breakdown regime can be explained by the presence of strain-induced vacancies. By applying a creep recovery model that does not involve adjustable parameters, it is shown that strain-induced vacancies can also explain the high-stress exponent of pure nickel.

References

1.
Lagneborg
,
R.
,
1972
, “
Dislocation Mechanisms in Creep
,”
Int. Metall. Rev.
,
17
(
1
), pp.
130
146
.
2.
Straub
,
S.
, and
Blum
,
W.
,
1990
, “
Does the “Natural” Third Power Law of Steady State Creep Hold for Pure Aluminium?
,”
Scr. Metall. Mater.
,
24
(
10
), pp.
1837
1842
.
3.
Sherby
,
O. D.
, and
Burke
,
P. M.
,
1968
, “
Mechanical Behavior of Crystalline Solids at Elevated Temperature
,”
Prog. Mater. Sci.
,
13
, pp.
323
390
.
4.
Kloc
,
L.
,
Sklenička
,
V.
, and
Ventruba
,
J.
,
2001
, “
Comparison of Low Stress Creep Properties of Ferritic and Austenitic Creep Resistant Steels
,”
Mater. Sci. Eng. A
,
319–321
, pp.
774
778
.
5.
Kloc
,
L.
,
Dymáček
,
P.
, and
Sklenička
,
V.
,
2018
, “
High Temperature Creep of Sanicro 25 Austenitic Steel at Low Stresses
,”
Mater. Sci. Eng. A
,
722
, pp.
88
92
.
6.
Norman
,
E. C.
, and
Duran
,
S. A.
,
1970
, “
Steady-State Creep of Pure Polycrystalline Nickel From 0.3 to 0.55 Tm
,”
Acta Metall.
,
18
(
6
), pp.
723
731
.
7.
Sandström
,
R.
,
2012
, “
Basic Model for Primary and Secondary Creep in Copper
,”
Acta Mater
,
60
(
1
), pp.
314
322
.
8.
Sandström
,
R.
,
2017
, “Fundamental Models for the Creep of Metals, ”
Creep
,
T.
Tanski
,
M.
Sroka
, and
A.
Zielinski
, eds.,
IntechOpen
.
9.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
,
Wiley
,
New York
.
10.
Mecking
,
H.
, and
Estrin
,
Y.
,
1980
, “
The Effect of Vacancy Generation on Plastic Deformation
,”
Scr. Metall.
,
14
(
7
), pp.
815
819
.
11.
Spigarelli
,
S.
, and
Sandström
,
R.
,
2018
, “
Basic Creep Modelling of Aluminium
,”
Mater. Sci. Eng. A
,
711
, pp.
343
349
.
12.
Sandström
,
R.
, and
Andersson
,
H. C. M.
,
2008
, “
Creep in Phosphorus Alloyed Copper During Power-Law Breakdown
,”
J. Nucl. Mater.
,
372
(
1
), pp.
76
88
.
13.
Sandström
,
R.
, and
Hallgren
,
J.
,
2012
, “
The Role of Creep in Stress Strain Curves for Copper
,”
J. Nucl. Mater.
,
422
(
1–3
), pp.
51
57
.
14.
Argon
,
A. S.
, and
Moffatt
,
W. C.
,
1981
, “
Climb of Extended Edge Dislocations
,”
Acta Metall.
,
29
(
2
), pp.
293
299
.
15.
Sui
,
F.
, and
Sandström
,
R.
,
2018
, “
Basic Modelling of Tertiary Creep of Copper
,”
J. Mater. Sci.
,
53
, pp.
6850
6863
.
16.
Korzhavyi
,
P. A.
, and
Sandström
,
R.
,
2015
, “
First-principles Evaluation of the Effect of Alloying Elements on the Lattice Parameter of a 23Cr25NiWCuCo Austenitic Stainless Steel to Model Solid Solution Hardening Contribution to the Creep Strength
,”
Mater. Sci. Eng. A
,
626
, pp.
213
219
.
17.
Sui
,
F.
, and
Sandström
,
R.
,
2019
, “
Creep Strength Contribution due to Precipitation Hardening in Copper–Cobalt Alloys
,”
J. Mater. Sci.
,
54
(
2
), pp.
1819
1830
.
18.
He
,
J.
, and
Sandström
,
R.
,
2017
, “
Basic Modelling of Creep Rupture in Austenitic Stainless Steels
,”
Theor. Appl. Fract. Mec.
,
89
, pp.
139
146
.
19.
Vujic
,
S.
,
Sandström
,
R.
, and
Sommitsch
,
C.
,
2015
, “
Precipitation Evolution and Creep Strength Modelling of 25Cr20NiNbN Austenitic Steel
,”
Mater. High Temp.
,
32
(
6
), pp.
607
618
.
20.
Ruano
,
O. A.
,
Miller
,
A. K.
, and
Sherby
,
O. D.
,
1981
, “
Influence of Pipe Diffusion on the Creep of Fine-Grained Materials
,”
Mater. Sci. Eng.
,
51
(
1
), pp.
9
16
.
21.
Blum
,
W.
, and
Reppich
,
B.
,
1985
, “Creep of Particle-Strengthened Alloys,”
Proceedings of the Creep Behaviour of Crystalline Solids
,
B.
Wishire
and
R. W.
Evans
, ed.,
Swansea, UK
,
Pineridge Press
, p.
83
.
22.
Arzt
,
E.
, and
Ashby
,
M. F.
,
1982
, “
Threshold Stresses in Materials Containing Dispersed Particles
,”
Scr. Metall.
,
16
(
11
), pp.
1285
1290
.
23.
Nardone
,
V. C.
, and
Tien
,
J. K.
,
1983
, “
Pinning of Dislocations on the Departure Side of Strengthening Dispersoids
,”
Scr. Metall.
,
17
(
4
), pp.
467
470
.
24.
Schröder
,
J. H.
, and
Arzt
,
E.
,
1985
, “
Weak Beam Studies of Dislocation/Dispersoid Interaction in an Ods Superalloy
,”
Scr. Metall.
,
19
(
9
), pp.
1129
1134
.
25.
Huang
,
J.
,
Meyer
,
M.
, and
Pontikis
,
V.
,
1989
, “
Is Pipe Diffusion in Metals Vacancy Controlled? A Molecular Dynamics Study of an Edge Dislocation in Copper
,”
Phys. Rev. Lett.
,
63
(
6
), pp.
628
631
.
26.
Purja Pun
,
G. P.
, and
Mishin
,
Y.
,
2009
, “
A Molecular Dynamics Study of Self-diffusion in the Cores of Screw and Edge Dislocations in Aluminum
,”
Acta Mater.
,
57
(
18
), pp.
5531
5542
.
27.
Soltani
,
S.
,
Abdolrahim
,
N.
, and
Sepehrband
,
P.
,
2018
, “
Mechanism of Intrinsic Diffusion in the Core of Screw Dislocations in FCC Metals—A Molecular Dynamics Study
,”
Comput. Mater. Sci.
,
144
, pp.
50
55
.
28.
Campbell
,
C. E.
,
Boettinger
,
W. J.
, and
Kattner
,
U. R.
,
2002
, “
Development of a Diffusion Mobility Database for Ni-Base Superalloys
,”
Acta Mater.
,
50
(
4
), pp.
775
792
.
29.
Ledbetter
,
H. M.
, and
Reed
,
R. P.
,
1973
, “
Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron-Nickel Alloys
,”
J. Phys. Chem. Ref. Data
,
2
(
3
), pp.
531
618
.
30.
Tiearney
,
T. C.
, and
Grant
,
N. J.
,
1982
, “
Measurement of Structural Parameters Important in Creep of Ni-Mo and Ni-W Solid Solutions
,”
Metall. Trans. A
,
13
(
10
), pp.
1827
1836
.
31.
Mishima
,
Y.
,
Ochiai
,
S.
, and
Suzuki
,
T.
,
1985
, “
Lattice Parameters of Ni(γ), Ni3Al(γ') and Ni3Ga(γ') Solid Solutions With Additions of Transition and B-Subgroup Elements
,”
Acta Metall.
,
33
(
6
), pp.
1161
1169
.
32.
Johnson
,
W. R.
,
Barrett
,
C. R.
, and
Nix
,
W. D.
,
1972
, “
The High-Temperature Creep Behavior of Nickel-Rich Ni-W Solid Solutions
,”
Metall. Mater. Trans. B
,
3
(
4
), pp.
963
969
.
33.
Amodeo
,
R. J.
, and
Ghoniem
,
N. M.
,
1988
, “
Review of Experimental Observations and Theoretical Models of Dislocation Cells and Subgrains
,”
Res Mech.
,
23
(
2–3
), pp.
137
160
.
34.
Dieter
,
G. E.
, and
Bacon
,
D. J.
,
1986
,
Mechanical Metallurgy
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.