Abstract

Radiation-induced embrittlement of reactor pressure vessel (RPV) steels can potentially limit the operating life of nuclear power plants. Over extended exposure to radiation doses, these body-centered cubic (BCC) irons demonstrate irradiation damage. Here, we present a continuum dislocation density (CDD) crystal plasticity model to capture the interaction among dislocations and self-interstitial atom (SIA) loops in α-iron. We demonstrate the importance of modeling cross slip using a combined stochastic Monte Carlo approach and the role of slip system strength anisotropy in capturing stochastic cross slip interactions. Through these captured interactions, the CDD crystal plasticity model can capture both the stress response and the physical evolution of dislocations on different slip system planes. Single-crystal verification experiments are used to calibrate the CDD crystal plasticity model, and a set of simplified polycrystalline simulations demonstrates the model’s ability to capture the stress response from tensile experiments on α-iron.

References

1.
Allen
,
T. R.
, and
Busby
,
J. T.
,
2009
, “
Radiation Damage Concerns for Extended Light Water Reactor Service
,”
JOM
,
61
(
7
), pp.
29
34
.
2.
Zinkle
,
S. J.
, and
Ghoniem
,
N. M.
,
2011
, “
Prospects for Accelerated Development of High Performance Structural Materials
,”
J. Nucl. Mater.
,
417
(
1–3
), pp.
2
8
.
3.
Singh
,
B.
,
Foreman
,
A.
, and
Trinkaus
,
H.
,
1997
, “
Radiation Hardening Revisited: Role of Intracascade Clustering
,”
J. Nucl. Mater.
,
249
(
2–3
), pp.
103
115
.
4.
Zinkle
,
S. J.
, and
Matsukawa
,
Y.
,
2004
, “
Observation and Analysis of Defect Cluster Production and Interactions With Dislocations
,”
J. Nucl. Mater.
,
329–333
(
Part A
), pp.
88
96
.
5.
de la Rubia
,
T.
,
Zbib
,
H.
,
Khraishi
,
T.
,
Wirth
,
B.
,
Victoria
,
M.
, and
Caturla
,
M.
,
2000
, “
Multiscale Modelling of Plastic Flow Localization in Irradiated Materials
,”
Nature
,
406
(
6798
), pp.
871
874
.
6.
Klueh
,
R.
, and
Nelson
,
A.
,
2007
, “
Ferritic/Martensitic Steels for Next-Generation Reactors
,”
J. Nucl. Mater.
,
371
(
1
), pp.
37
52
. Nuclear Fuels and Structural Materials 1.
7.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
2002
, “
Modeling the Evolution of Crystallographic Dislocation Density in Crystal Plasticity
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
1979
2009
.
8.
Cheong
,
K.-S.
, and
Busso
,
E. P.
,
2004
, “
Discrete Dislocation Density Modelling of Single Phase FCC Polycrystal Aggregates
,”
Acta Mater.
,
52
(
19
), pp.
5665
5675
.
9.
Kocks
,
U.
,
1976
, “
Laws for Work-Hardening and Low-Temperature Creep
,”
J. Eng. Mater.
,
98
(
1
), pp.
76
85
.
10.
Roters
,
F.
,
Raabe
,
D.
, and
Gottstein
,
G.
,
2000
, “
Work Hardening in Heterogeneous Alloys – a Microstructural Approach Based on Three Internal State Variables
,”
Acta Mater.
,
48
(
17
), pp.
4181
4189
.
11.
Ma
,
A.
, and
Roters
,
F.
,
2004
, “
A Constitutive Model for FCC Single Crystals Based on Dislocation Densities and Its Application to Uniaxial Compression of Aluminium Single Crystals
,”
Acta Mater.
,
52
(
12
), pp.
3603
3612
.
12.
Arsenlis
,
A.
,
Wirth
,
B. D.
, and
Rhee
,
M.
,
2004
, “
Dislocation Density-Based Constitutive Model for the Mechanical Behaviour of Irradiated Cu
,”
Philos. Mag.
,
84
(
34
), pp.
3617
3635
.
13.
Wirth
,
B. D.
,
Caturla
,
M. J.
,
Diaz de la Rubia
,
T.
,
Khraishi
,
T.
, and
Zbib
,
H.
,
2001
, “
Mechanical Property Degradation in Irradiated Materials: A Multiscale Modeling Approach
,”
Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms
,
180
(
1–4
), pp.
23
31
.
14.
Vincent
,
L.
,
Libert
,
M.
,
Marini
,
B.
, and
Rey
,
C.
,
2010
, “
Towards a Modelling of RPV Steel Brittle Fracture Using Crystal Plasticity Computation on Polycrystalline Aggregates
,”
J. Nucl. Mater.
,
406
(
1
), pp.
91
96
.
15.
Patra
,
A.
, and
McDowell
,
D. L.
,
2013
, “
Continuum Modeling of Localized Deformation in Irradiated BCC Materials
,”
J. Nucl. Mater.
,
432
(
1
), pp.
414
427
.
16.
Barton
,
N. R.
,
Arsenlis
,
A.
, and
Marian
,
J.
,
2013
, “
A Polycrystal Plasticity Model of Strain Localization in Irradiated Iron
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
341
351
.
17.
Chakraborty
,
P.
, and
Biner
,
S. B.
,
2016
, “
Crystal Plasticity Modeling of Irradiation Effects on Flow Stress in Pure-Iron and Iron-Copper Alloys
,”
Mech. Mater.
,
101
, pp.
71
80
.
18.
Asaro
,
R. J.
,
1983
, “
Crystal Plasticity
,”
J. Appl. Mech.
,
50
(
4b
), pp.
921
934
.
19.
Orowan
,
E.
,
1940
, “
Problems of Plastic Gliding
,”
Proc. Phys. Soc.
,
52
(
1
), p.
8
.
20.
Asaro
,
R. J.
, and
Needleman
,
A.
,
1985
, “
Overview No. 42: Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
,
33
(
6
), pp.
923
953
.
21.
Ohashi
,
T.
,
1994
, “
Numerical Modelling of Plastic Multislip in Metal Crystals of FCC Type
,”
Philos. Mag. A
,
70
(
5
), pp.
793
803
.
22.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D. D.
,
Bieler
,
T. R.
, and
Raabe
,
D.
,
2010
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
,
58
(
4
), pp.
1152
1211
.
23.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
, 2nd ed.,
John Wiley & Sons
,
Malabar, FL
.
24.
Zbib
,
H. M.
,
Dıaz De La Rubia
,
T.
, and
Rhee
,
M.
,
2000
, “
3D Dislocation Dynamics: Stress-Strain Behavior and Hardening Mechanisms in FCC and BCC Metals
,”
J. Nucl. Mater.
,
276
(
1
), pp.
154
165
.
25.
Lyu
,
H.
,
Ruimi
,
A.
, and
Zbib
,
H. M.
,
2015
, “
A Dislocation-Based Model for Deformation and Size Effect in Multi-Phase Steels
,”
Int. J. Plast.
,
72
(
4
), pp.
44
59
.
26.
Raabe
,
D.
,
1995
, “
Simulation of Rolling Textures of BCC Metals Considering Grain Interactions and Crystallographic Slip on {110}, {112} and {123} Planes
,”
Mater. Sci. Eng. A
,
197
(
1
), pp.
31
37
.
27.
Alankar
,
A.
,
Field
,
D. P.
, and
Raabe
,
D.
,
2014
, “
Plastic Anisotropy of Electro-Deposited Pure α-Iron With Sharp Crystallographic < 1 1 1 > Texture in Normal Direction: Analysis by An Explicitly Dislocation-Based Crystal Plasticity Model
,”
Int. J. Plast.
,
52
(
Special Issue in Honor of Hussein Zbib
), pp.
18
32
.
28.
Li
,
D.
,
Zbib
,
H.
,
Sun
,
X.
, and
Khaleel
,
M.
,
2014
, “
Predicting Plastic Flow and Irradiation Hardening of Iron Single Crystal with Mechanism-Based Continuum Dislocation Dynamics
,”
Int. J. Plast.
,
52
(
8
), pp.
3
17
.
29.
Taheri-Nassaj
,
N.
, and
Zbib
,
H. M.
,
2016
, “
A Mesoscale Model of Plasticity: Dislocation Dynamics and Patterning (One-Dimensional)
,”
J. Eng. Mater.
,
138
(
4
), p.
041015
.
30.
Püschl
,
W.
,
2002
, “
Models for Dislocation Cross-Slip in Close-Packed Crystal Structures: a Critical Review
,”
Prog. Mater. Sci.
,
47
(
4
), pp.
415
461
.
31.
Rhee
,
M.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
, and
Huang
,
H.
,
1998
, “
Models for Long-/Short-Range Interactions and Cross Slip in 3D Dislocation Simulation of BCC Single Crystals
,”
Modell. Simul. Mater. Sci. Eng.
,
6
(
4
), p.
467
.
32.
Mastorakos
,
I.
, and
Zbib
,
H.
,
2014
, “
A Multiscale Approach to Study the Effect of Chromium and Nickel Concentration in the Hardening of Iron Alloys
,”
J. Nucl. Mater.
,
449
(
1
), pp.
101
110
.
33.
Permann
,
C. J.
,
Gaston
,
D. R.
,
Andrš
,
D.
,
Carlsen
,
R. W.
,
Kong
,
F.
,
Lindsay
,
A. D.
,
Miller
,
J. M.
,
Peterson
,
J. W.
,
Slaughter
,
A. E.
,
Stogner
,
R. H.
, and
Martineau
,
R. C.
,
2020
, “
MOOSE: Enabling Massively Parallel Multiphysics Simulation
,”
SoftwareX
,
11
(
10
), p.
100430
.
34.
Keh
,
A.
,
1965
, “
Work Hardening and Deformation Sub-structure in Iron Single Crystals Deformed in Tension At 298 K
,”
Philos. Mag.
,
12
(
115
), pp.
9
30
.
35.
Lee
,
M.
,
Lim
,
H.
,
Adams
,
B.
,
Hirth
,
J.
, and
Wagoner
,
R.
,
2010
, “
A Dislocation Density-Based Single Crystal Constitutive Equation
,”
Int. J. Plast.
,
26
(
7
), pp.
925
938
.
36.
Pitts
,
S. A.
,
2019
,
Modeling and Simulation of Microstructure Evolution and Deformation in an Irradiated Environment, Publication Number 13810450, Doctoral dissertation
,
ProQuest Dissertations Publishing
,
Washington State University, Pullman, WA
.
37.
Arsenlis
,
A.
,
Rhee
,
M.
,
Hommes
,
G.
,
Cook
,
R.
, and
Marian
,
J.
,
2012
, “
A Dislocation Dynamics Study of the Transition From Homogeneous to Heterogeneous Deformation in Irradiated Body-Centered Cubic Iron
,”
Acta Mater.
,
60
(
9
), pp.
3748
3757
.
38.
Lambrecht
,
M.
,
Meslin
,
E.
,
Malerba
,
L.
,
Hernández-Mayoral
,
M.
,
Bergner
,
F.
,
Pareige
,
P.
,
Radiguet
,
B.
, and
Almazouzi
,
A.
,
2010
, “
On the Correlation Between Irradiation-Induced Microstructural Features and the Hardening of Reactor Pressure Vessel Steels
,”
J. Nucl. Mater.
,
406
(
1
), pp.
84
89
.
39.
Lambrecht
,
M.
,
Malerba
,
L.
, and
Almazouzi
,
A.
,
2008
, “
Influence of Different Chemical Elements on Irradiation-Induced Hardening Embrittlement of RPV Steels
,”
J. Nucl. Mater.
,
378
(
3
), pp.
282
290
.
40.
Python Software Foundation
,
2018
, “
The Python Standard Library
,” https://www.python.org/, Accessed July 18, 2018.
41.
Meslin
,
E.
,
Lambrecht
,
M.
,
Hernández-Mayoral
,
M.
,
Bergner
,
F.
,
Malerba
,
L.
,
Pareige
,
P.
,
Radiguet
,
B.
,
Barbu
,
A.
,
Gómez-Briceño
,
D.
,
Ulbricht
,
A.
, and
Almazouzi
,
A.
,
2010
, “
Characterization of Neutron-Irradiated Ferritic Model Alloys and a RPV Steel From Combined APT, SANS, TEM and PAS Analyses
,”
J. Nucl. Mater.
,
406
(
1
), pp.
73
83
.
You do not currently have access to this content.