Abstract

Fabrication of Functionally Graded Metal Matrix Composites (FGMMC) especially with high ceramic reinforcement’s volume fraction is highly challenging. Depending on the processing technique and process parameters various defects may arise. This research aims to find the best procedure to make FGMMCs with the highest quality and minimum cost. A new method is proposed that incorporates lost-foam and melt infiltration with semicentrifugal casting to produce FGMMC. Experiments were performed to in-situ fabricate 6061-Aluminum alloy reinforced with gradient distributed Silicon carbide particles (Al/SiC FGMMC). Effect of SiC %, Al pouring temperature, and rotational speed on the fabricated specimens’ hardness, strength, and reinforcement gradient were investigated using the design of experiments and regression analysis. Results reveal the optimum procedure and process settings based on desired properties/gradient required. Mathematical model formulated captures the effect of these process parameters on process cost, and cost of poor quality. Improper selection of these parameters may lead to extensive losses due cost of poor quality which is 12 times higher than the material cost. The proposed manufacturing process proved satisfactory in ensuring proper dispersion. A desirability function can be used to determine the process parameters and volume fraction that minimizes the defects and gives superior properties for a specific application.

References

1.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
,
1999
, “
Functionally Graded Materials: Design
,”
Processing, and Applications
,
Springer
,
Boston, MA
.
2.
Chmielewski
,
M.
, and
Pietrzak
,
K.
,
2016
, “
Metal-Ceramic Functionally Graded Materials—Manufacturing, Characterization, Application
,”
Bull. Pol. Acad. Sci.
,
64
(
1
), pp.
6
11
.
3.
Udupa
,
G.
,
Rao
,
S. S.
, and
Gangadharan
,
K. V.
,
2014
, “
Functionally Graded Composite Materials: An Overview
,”
Procedia Mater. Sci.
,
5
(
1
), pp.
1291
1299
.
4.
Erdemir
,
F.
,
Canakci
,
A.
, and
Varol
,
T.
,
2015
, “
Microstructural Characterization and Mechanical Properties of Functionally Graded Al2024/SiC Composites Prepared by Powder Metallurgy Techniques
,”
Trans. Nonferrous Metals Soc. China
,
25
(
11
), pp.
3569
3577
.
5.
Neubrand
,
B.
,
Kieback
,
A.
, and
Riedel
,
H.
,
2003
, “
Processing Techniques for Functionally Graded Materials
,”
Mater. Sci. Eng.
, pp.
81
106
.
6.
Nemat-Alla
,
M. M.
,
Ata
,
M. H.
,
Bayoumi
,
M. R.
, and
Khair-Eldeen
,
W.
,
2011
, “
Powder Metallurgical Fabrication and Microstructural Investigations of Aluminum/Steel Functionally Graded Material
,”
Mater. Sci. Appl.
,
2
(
12
), pp.
1708
1718
.
7.
Kaushal
,
S.
,
Gupta
,
D.
, and
Bhowmick
,
H.
,
2018
, “
On Processing of Ni-WC Based Functionally Graded Composite Clads Through Microwave Heating
,”
Mater. Manuf. Processes
,
33
(
8
), pp.
822
828
.
8.
Amado
,
J. M.
,
Montero
,
J.
,
Tobar
,
M. J.
and
Yanez
,
A.
,
2012
, “
Ni-based Metal Matrix Composite Functionally Graded Coatings
,”
Phys. Procedia
, pp.
362
367
.
9.
Meng
,
W.
,
Zhang
,
W.
,
Zhang
,
W.
,
Yin
,
X.
,
Guo
,
L.
, and
Cui
,
B.
,
2019
, “
Additive Fabrication of 316L/Inconel625/Ti6Al4 V Functionally Graded Materials by Laser Synchronous Preheating
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5–8
), pp.
2525
2538
.
10.
Rasheedat
,
M. M.
, and
Esther
,
A. T.
,
2017
, “Processing Methods of Functionally Graded Materials,”
Functionally Graded Materials
,
C.
Springer
, ed.,
Springer
,
Nigeria
.
11.
Rajan
,
T. P.
,
Pillia
,
R. M.
, and
Pai
,
B. C.
,
2013
, “
Centrifugal Casting of Functionally Graded Aluminium Matrix Composite Components, International Journal of Cast Metals Research
,”
Int. J. Metal Res.
, pp.
214
218
.
12.
El-Galy
,
I. M.
,
Ahmed
,
M. H.
, and
Bassiouny
,
B. I.
,
2017
, “
Characterization of Functionally Graded Al-SiCp Metal Matrix Composites Manufactured by Centrifugal Casting
,”
Alexandria Eng. J.
,
56
(
4
), pp.
371
381
.
13.
Melgarejo
,
H.
,
Suárez
,
M.
, and
Sridharan
,
K.
,
2006
, “
Wear Resistance of a Functionally-Graded Aluminum Matrix Composite
,”
Scr. Mater.
,
55
(
1
), pp.
95
98
.
14.
Melgarejo
,
Z. H.
,
Suárez
,
O. M.
, and
Sridharan
,
K.
,
2008
, “
Microstructure and Properties of Functionally Graded Al–Mg–B Composites Fabricated by Centrifugal Casting
,”
Composites: Part A
,
39
(
7
), pp.
1150
1158
.
15.
Adelakin
,
T. K.
, and
Suárez
,
O. M.
,
2011
, “
Study of Boride-Reinforced Aluminum Matrix Composites Produced via Centrifugal Casting
,”
Mater. Manuf. Processes
,
26
(
2
), pp.
338
345
.
16.
Rajan
,
T. P. D.
,
Pillai
,
R. M.
, and
Pai
,
B. C.
,
2010
, “
Characterization of Centrifugal Cast Functionally Graded Aluminum-Silicon Carbide Metal Matrix Composites
,”
Mater. Charact.
, pp.
923
928
.
17.
Sequeira
,
P. D.
,
Watanabe
,
Y.
,
Eryu
,
H.
,
Yamamoto
,
T.
, and
Matsuura
,
K.
,
2007
, “
Effects of Platelet Size and Mean Volume Fraction on Platelet Orientation and Volume Fraction Distributions in Functionally Graded Material Fabricated by a Centrifugal Solid-Particle Method
,”
ASME J. Eng. Mater. Technol.
,
129
(
2
), pp.
304
312
.
18.
Mojtaba
,
S.
,
Jamshid
,
M. A.
, and
Hamidreza
,
F.
,
2014
, “
Fabrication and Characterization of Functionally Graded Al–SiC Nanocomposite by Using a Novel Multistep Friction Stir Processing
,”
Mater. Des.
, pp.
419
426
.
19.
Shahin
,
S.
,
Rasoul
,
A. K.
,
Reza
,
M.
,
Zheng-Yi
,
B.
, and
Brabazon
,
D.
,
2017
, “
Stir Casting Process for Manufacture of Al–SiC Composites
,”
Rare Mater.
, pp.
581
890
.
20.
Behera
,
R.
,
Chatterjee
,
D.
, and
Sutradhar
,
G.
,
2012
, “
Effect of Reinforcement Particles on the Fluidity and Solidification Behavior of the Stir Cast Aluminum Alloy Metal Matrix Composites
,”
Am. J. Mater. Sci.
,
2
(
3
), pp.
53
61
.
21.
Laffreniere
,
S.
, and
Iron
,
G.
,
1990
, “
Sedimentation During Liquid Processing of Metal Matrix Composites
,”
Proceedings of International Symposium on Production, Refining, Fabrication and Recycling ot Liquid Metals
,
Hamilton, Ontario, Canada
,
Aug. 26–30
.
22.
Samuel
,
A.
, and
Samuel
,
F.
,
1995
, “
Foundary Aspects of Particulate Reinforced Aluminium MMCs: Factors Controlling Composite Quality
,”
Key Eng. Mater.
,
104–107
(
1
), pp.
65
98
.
23.
Samuel
,
A.
,
Gotmare
,
A.
, and
Samuel
,
F. H.
,
1995
, “
The Effect of Solidification Rate and Metal Feedability On Porosity and S1C/AI2O3 Particle Distribution In an Al-SiMg (A356) Alloy
,”
Compos. Sci. Technol.
,
53
(
3
), pp.
301
315
.
24.
Eskin
,
D.
, and
Katgerman
,
L.
,
2006
, “
Thermal Contraction During Solidification of Aluminium Alloys
,”
Mater. Sci. Forum
,
519–521
(
1
), pp.
1681
1686
.
You do not currently have access to this content.