Abstract

Very high temperature reactors (VHTRs) are planned to be operated between 550 and 950C and demand a thermally efficient intermediate heat exchanger (IHX) in the heat transport system (HTS). The current technological development of compact heat exchangers (CHXs) for VHTRs is at the “proof of concept” level. A significant development in the CHX technologies is essential for the VHTRs to be efficient, cost-effective, and safe. CHXs have very high thermal efficiency and compactness, making them a prime candidate for IHXs in VHTRs. Photochemically etched plates with the desired channel pattern are stacked and diffusion bonded to fabricate CHXs. All plates are compressed at an elevated temperature over a specified period in the diffusion bonding process, promoting atomic diffusion and grain growth across bond surfaces resulting in a monolithic block. The diffusion bonding process changes the base metal properties, which are unknown for Alloy 800H, a candidate alloy for CHX construction. Hence, developing mechanical response data and understanding failure mechanisms of diffusion bonded Alloy 800H at elevated temperatures is a key step for advancing the technology of IHXs in VHTRs. The ultimate goal of this study is to develop ASME BPVC Section III, Division 5 design rules for CHXs in nuclear service. Toward this goal, mechanical performance and microstructures of diffusion bonded Alloy 800H are investigated through a series of tensile, fatigue, creep, and creep-fatigue tests at temperatures 550 to 760C. The test results, failure mechanisms, and microstructures of diffusion bonded Alloy 800H are scrutinized and presented.

References

1.
US DOE,
2002
, US DOE Nuclear Energy Research Advisory Committee and Gen IV International Forum, A Technology Roadmap for Generation IV Nuclear Energy Systems.
2.
Collins
,
J.
,
2009
,
Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward
.
Technical Report, Idaho National Laboratory (INL)
.
3.
Sabharwall
,
P.
,
Kim
,
E. S.
,
Siahpush
,
A.
, and
Patterson
,
M.
,
2012
, “
Preliminary Design for Conventional and Compact Secondary Heat Exchanger in A Molten Salt Reactor
,”
ASME 2012 Heat Transfer Summer Conference Collocated With the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
,
Rio Grande, Puerto Rico
.
4.
Lillo
,
T.
,
Williamson
,
R.
,
Reed
,
T.
,
Davis
,
C.
, and
Ginosar
,
D.
,
2005
,
Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs
,
Technical Report, Idaho National Laboratory (INL)
.
5.
Ravindran
,
P.
,
Sabharwall
,
P.
, and
Anderson
,
N. A.
,
2010
, “
Modeling a Printed Circuit Heat Exchanger with relap5-3d For The Next Generation Nuclear Plant
.”
Office of Scientific and Technical Information Technical Reports
.
6.
Oh
,
C. H.
,
Kim
,
E. S.
, and
Patterson
,
M.
,
2010
, “
Design Option of Heat Exchanger for the Next Generation Nuclear Plant
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), p.
032903
.
7.
Eesa
,
M.
, and
Marriott
,
G.
,
2018
, Photochemical Etching of Heat Exchanger Plates.
8.
Li
,
X.
,
Smith
,
T.
,
Kininmont
,
D.
, and
Dewson
,
S. J.
,
2009
, “
Materials for Nuclear Diffusion-Bonded Compact Heat Exchangers
,”
Proceedings of ICAPP’09
,
Tokyo, Japan
, p.
9
.
9.
Mylavarapu
,
S. K.
,
Sun
,
X.
,
Christensen
,
R. N.
,
Unocic
,
R. R.
,
Glosup
,
R. E.
, and
Patterson
,
M. W.
,
2012
, “
Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers
,”
Nucl. Eng. Des.
,
249
, pp.
49
56
.
10.
Sabharwall
,
P.
,
Clark
,
D. E.
,
Mizia
,
R. E.
,
Glazoff
,
M. V.
, and
McKellar
,
M. G.
,
2013
, “
Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011009
.
11.
Jahn
,
S.
,
Sändig
,
S.
,
Dahms
,
S.
, and
Gemse
,
F.
,
2014
, “
Diffusion Bonding Systems
,”
Materialwissenschaft und Werkstofftechnik
,
45
(
9
), pp.
807
814
.
12.
Mizia
,
R.
,
2010
, “
Scoping Investigation of Diffusion Bonding for NGNP Process Application Heat Exchangers
.” PLN-3565, July, 9.
13.
Li
,
X.
,
Kininmont
,
D.
,
Le Pierres
,
R.
, and
Dewson
,
S. J.
,
2008
, “
Alloy 617 for the High Temperature Diffusion-Bonded Compact Heat Exchangers
,”
Proceedings of ICAPP
,
Anaheim, CA
, Vol. 8, pp.
282
288
.
14.
Sah
,
I.
,
Kim
,
D.
,
Lee
,
H. J.
, and
Jang
,
C.
,
2013
, “
The Recovery of Tensile Ductility in Diffusion-Bonded Ni-Base Alloys by Post-Bond Heat Treatments
,”
Mater. Des.
,
47
, pp.
581
589
.
15.
Sah
,
I.
,
Hwang
,
J.-B.
,
Kim
,
W.-G.
,
Kim
,
E.-S.
, and
Kim
,
M.-H.
,
2020
, “
High-Temperature Mechanical Behaviors of Diffusion-Welded Alloy 617
,”
Nucl. Eng. Des.
,
364
, p.
110617
.
16.
Rozman
,
K.
,
Carl
,
M.
,
Kapoor
,
M.
,
Doğan
,
Ö.
, and
Hawk
,
J.
,
2019
, “
Creep Performance of Transient Liquid Phase Bonded Haynes 230 Alloy
,”
Mater. Sci. Eng. A.
,
768
, p.
138477
.
17.
Kim
,
S. H.
,
Kim
,
C.
, and
Jang
,
C.
,
2018
,
“Diffusion Bonding of a Cold-Worked Ni-Base Superalloy,“ Pressure Technology, vol. 40764, p. V001T02A004. American Society of Mechanical Engineers
.
18.
Mizia
,
R. E.
,
Clark
,
D. E.
,
Glazoff
,
M. V.
,
Lister
,
T. E.
, and
Trowbridge
,
T. L.
,
2013
, “
Optimizing the Diffusion Welding Process for Alloy 800H: Thermodynamic, Diffusion Modeling, and Experimental Work
,”
Metall. Mater. Trans. A.
,
44
(
1
), pp.
154
161
.
19.
Keating
,
R.
,
Nestell
,
J.
,
McKillop
,
S.
,
Allen
,
T.
, and
Anderson
,
M.
,
2019
, “
Potential ASME Code Case for Construction of Compact Heat Exchangers in High Temperature Reactors
,”
The Proceedings of the International Conference on Nuclear Engineering (ICONE) 2019.27
,
Tsukuba, Japan
.
20.
Mahajan
,
H. P.
,
Devi
,
U.
, and
Hassan
,
T.
,
2019
, “
Material Property Evaluation and Response Simulation of the Diffusion Bonded Materials of Compact Heat Exchanger
,”
Proceedings of the International Conference on Nuclear Engineering (ICONE) 2019.27
,
Tsukuba, Japan
.
21.
Mahajan
,
H. P.
,
Elbakhshwan
,
M.
,
Beihoff
,
B. C.
, and
Hassan
,
T.
,
2020
, “
Mechanical and Microstructural Characterization of Diffusion Bonded 800H
,”
Pressure Vessels and Piping Conference
,
Virtual, Online conference
.
22.
2017 ASME Boiler & Pressure Vessel Code, Section VIII Division 1
”.
American Society of Mechanical Engineers
.
23.
Frommert
,
M.
, and
Gottstein
,
G.
,
2009
, “
Mechanical Behavior and Microstructure Evolution During Steady-State Dynamic Recrystallization in the Austenitic Steel 800H
,”
Mater. Sci. Eng. A.
,
506
(
1–2
), pp.
101
110
.
24.
Swindeman
,
R. W.
,
Zamrik
,
S. Y.
, and
Maziasz
,
P. J.
,
2007
, “
Effects of Long-Term Service on the Microstructure and Tensile Properties of Alloy 800H
,”
ASME 2007 Pressure Vessels and Piping Conference
,
San Antonio, TX
, pp.
483
492
.
25.
Booker
,
M.
,
1978
,
Analytical Representation of the Creep and Creep-Rupture Behavior of Alloy 800H
.
Technical Report
,
Oak Ridge National Laboratory
,
TN
.
26.
Lai
,
G.
, and
Kimball
,
O.
,
1978
,
Aging Behavior of Alloy 800H and Associated Mechanical Property Changes.[538/sup 0/to 816/sup 0/c]
.
Technical Report
,
General Atomic Co
.,
San Diego, CA
.
27.
Donachie
,
M. J.
, and
Donachie
,
S. J.
,
2002
,
Superalloys: A Technical Guide
,
ASM International, Materials Park, OH
.
28.
Chow
,
J.
,
Soo
,
P.
, and
Epel
,
L.
,
1978
,
Creep and Fatigue Properties of Incoloy 800H in a High-Temperature Gas-Cooled Reactor (HTGR) Helium Environment, Brookhaven National Lab., Upton, NY
.
29.
Tavassoli
,
A.
, and
Colombe
,
G.
,
1978
, “
Mechanical and Microstructural Properties of Alloy 800
,”
Metallurgical Trans. A
,
9
(
9
), p.
1203
.
30.
Jones
,
W.
, and
Allen
,
R.
,
1982
, “
Mechanical Behavior of Alloy 800 At 838 K
,”
Metallurgical Trans. A
,
13
(
4
), pp.
637
648
.
31.
Villagrana
,
R.
,
Kaae
,
J.
, and
Ellis
,
J.
,
1981
, “
The Effect of Aging and Cold Working on the High-Temperature Low-Cycle Fatigue Behavior of Alloy 800H: Part II: Continuous Cyclic Loading
,”
Metallurgical Trans. A
,
12
(
11
), pp.
1849
1857
.
32.
Soo
,
P.
, and
Sabatini
,
R. L.
,
1984
, “
High-Cycle Fatigue Behavior of Incoloy Alloy 800H in a Simulated Htgr Helium Environment Containing High Moisture Levels
,”
Nucl. Technol.
,
66
(
2
), pp.
324
346
.
33.
Hour
,
K.
, and
Stubbins
,
J.
,
1989
, “
The Effects of Hold Time and Frequency on Crack Growth in Alloy 800H At 650°C
,”
Metallurgical Trans. A
,
20
(
9
), p.
1727
.
You do not currently have access to this content.