Abstract

A combined experimental and theoretical investigation is conducted on elevated-temperature thermal transport properties of a multifunctional polytetrafluoroethylene (PTFE)/polyetheretherketone (PEEK) matrix composite containing short carbon fibers and graphite flakes. In experiments, X-ray diffraction (XRD), scanning electron microscope (SEM), and optical microscopy are used to determine morphologies and microstructure of neat PTFE and PEEK polymers, PTFE/PEEK blend, and individual PTFE and PEEK phases in the carbon fiber (CF)Gr/PTFE/PEEK composite. Microstructure parameters determined are used in subsequent analytical modeling and predictions. Effective heat capacity and thermal conductivities of the composite and its polymer matrix are determined by a modulated differential scanning calorimetry (MDSC) method with temperature up to 225 °C. The results show that thermal transport properties of the composite are significantly affected by temperature and polymer transitions. The carbon fibers and graphite in the composite improve its mechanical and tribological performance and also enhances heat conduction. Thermal diffusivity of the composite, however, is governed by the PTFE/PEEK matrix due to its high thermal capacity. In the theoretical/analytical study, thermodynamic considerations are made at both molecular and micromechanical levels. Theoretical models and micromechanics analyses are used to determine effective thermal transport properties of the composite. The results clarify the roles of individual constituents and temperature effects on the composite thermal transport. Thermal percolation predictions compare well with experimental data; they also reveal that 10% (by volume) graphite lubricant in the carbon fiber-reinforced PTFE/PEEK composite leads to formation of effective thermal conductive networks, which rapidly increases thermal percolation due to their high efficiency of thermal transport.

References

1.
Jones
,
D. P.
,
Leach
,
D. C.
, and
Moore
,
D. R.
,
1985
, “
Mechanical Properties of Polyetheretherketone for Engineering Applications
,”
Polymer
,
26
(
9
), pp.
1385
1393
.
2.
Lin
,
L.
,
Pei
,
X. Q.
,
Bennewitz
,
R.
, and
Schlarb
,
A. K.
,
2019
, “
Tribological Response of PEEK to Temperature Induced by Friction and External Heating
,”
Tribol. Lett.
,
67
(
2
), pp.
1
9
.
3.
Burris
,
D. L.
, and
Sawyer
,
W. G.
,
2006
, “
A Low Friction and Ultra-Low Wear Rate PEEK/PTFE Composite
,”
Wear
,
261
(
3–4
), pp.
410
418
.
4.
Biswas
,
S. K.
, and
Vijayan
,
K.
,
1992
, “
Friction and Wear of PTFE—A Review
,”
Wear
,
158
(
1–2
), pp.
193
211
.
5.
Dong
,
W.
,
Nie
,
S.
, and
Zhang
,
A.
,
2013
, “
Tribological Behavior of PEEK Filled With CF/PTFE/Graphite Sliding Against Stainless Steel Surface Under Water Lubrication
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
227
(
10
), pp.
1129
1137
.
6.
Reddyhoff
,
T.
,
Schmidt
,
A.
, and
Spikes
,
H.
,
2019
, “
Thermal Conductivity and Flash Temperature
,”
Tribol. Lett.
,
67
(
22
), pp.
21
31
.
7.
Abdel-Aal
,
H. A.
,
2013
, “Flash Temperature Theory,”
Encyclopedia of Tribology
,
Q. J.
Wang
, and
Y. W.
Chung
, eds.,
Springer
,
Boston, MA
.
8.
Williams
,
J.
,
2005
,
Engineering Tribology
, Chapter 3,
Cambridge University Press
,
Cambridge, UK
.
9.
Choy
,
C. L.
,
Kwok
,
K. W.
,
Leung
,
W. P.
, and
Lau
,
F. P.
,
1994
, “
Thermal Conductivity of Poly(Ether Ether Ketone) and Its Short-Fiber Composites
,”
J. Polym. Sci. Part B: Polym. Phys.
,
32
(
8
), pp.
1389
1397
.
10.
Hsu
,
K. L.
,
Kline
,
D. E.
, and
Tomlinson
,
J. N.
,
1965
, “
Thermal Conductivity of Polytetrafluoroethylene
,”
J. Appl. Polym. Sci.
,
9
(
11
), pp.
3567
3574
.
11.
Price
,
D. M.
, and
Jarratt
,
M.
,
2002
, “
Thermal Conductivity of PTFE and PTFE Composites
,”
Thermochim. Acta
,
392–393
, pp.
231
236
.
12.
Cai
,
X.
,
Jiang
,
Z.
,
Zhang
,
X.
,
Gao
,
T.
,
Yue
,
X.
, and
Zhang
,
X.
,
2018
, “
Thermal Property Improvement of Polytetrafluoroethylene Nanocomposites With Graphene Nanoplatelets
,”
RSC Adv.
, Royal Soc. Chem.
8
(
21
), pp.
11367
11374
.
13.
Zhang
,
G.
,
Xia
,
Y.
,
Wang
,
H.
,
Tao
,
Y.
,
Tao
,
G.
,
Tu
,
S.
, and
Wu
,
H.
,
2010
, “
A Percolation Model of Thermal Conductivity for Filled Polymer Composites
,”
J. Compos. Mater.
,
44
(
8
), pp.
963
970
.
14.
Panda
,
J. N.
,
Bijwe
,
J.
, and
Pandey
,
R. K.
,
2016
, “
Role of Treatment to Graphite Particles to Increase Thermal Conductivity in Controlling Tribo-Performance of Polymer Composites
,”
Wear
,
360–361
, pp.
87
96
.
15.
ASTM
,
2017
, “
ASTM E1952-17 Standard Test Method for Thermal Conductivity and Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry
,” pp.
1
7
.
16.
Marcus
,
S. M.
, and
Blaine
,
R.
,
1994
, “
Thermal Conductivity of Polymers, Glasses and Ceramics
,”
Thermochim. Acta
,
243
(
2
), pp.
231
239
.
17.
Ryland
,
A. L.
,
1958
, “
X-Ray Diffraction
,”
J. Chem. Educ.
,
35
(
2
), pp.
80
83
.
18.
Ruland
,
W.
,
1961
, “
X-Ray Determination of Crystallinity and Diffuse Disorder Scattering
,”
Acta Crystallogr.
,
14
(
11
), pp.
1180
1185
.
19.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
, 6th ed.,
John Wiley & Sons, Inc.
,
New York
.
20.
Dos Santos
,
W. N.
,
De Sousa
,
J. A.
, and
Gregorio
,
R.
,
2013
, “
Thermal Conductivity Behaviour of Polymers Around Glass Transition and Crystalline Melting Temperatures
,”
Polym. Test.
,
32
(
5
), pp.
987
994
.
21.
Kingery
,
W. D.
, and
McQuarrie
,
M. C.
,
1954
, “
Thermal Conductivity: I, Concepts of Measurement and Factors Affecting Thermal Conductivity of Ceramic Materials
,”
J. Am. Ceram. Soc.
,
37
(
2
), pp.
67
72
.
22.
Kapitza
,
P. L.
,
1941
, “
The Study of Heat Transfer in Helium II
,”
J. Phys (USSR)
,
4
(
181
), pp.
354
355
.
23.
Miyase
,
A.
,
Qu
,
S.
,
Lo
,
K. H.
, and
Wang
,
S. S.
,
2020
, “
Elevated-Temperature Thermal Expansion of PTFE/PEEK Matrix Composite With Random-Oriented Short Carbon Fibers and Graphite Flakes
,”
ASME J. Eng. Mater. Technol.
,
142
(
2
), p.
021002
.
24.
Maxwell-Garnett
,
J. C.
,
1904
, “
Colours in Metal Glasses and in Metallic Films
,”
Philos. Trans. R. Soc. London Ser. A.
,
203
(
359–371
), pp.
385
420
.
25.
Halpin
,
J. C.
,
1984
,
Primer on Compsite Materials: Analysis
,
Technomic Publishing Co., Inc
,
Lancaster, PA
.
26.
Agarwal
,
B. D.
, and
Broutman
,
L. J.
,
1980
,
Analysis and Performance of Fiber Composites
,
John Wiley & Sons, Inc
.,
New York
.
27.
Hashin
,
Z.
,
2001
, “
Thin Interphase/Imperfect Interface in Conduction
,”
J. Appl. Phys.
,
89
(
4
), pp.
2261
2267
.
28.
Hasselman
,
D. P. H.
, and
Johnson
,
L. F.
,
1987
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Compos. Mater.
,
21
(
6
), pp.
508
515
.
29.
Agari
,
Y.
,
Ueda
,
A.
, and
Nagai
,
S.
,
1993
, “
Thermal Conductivity of a Polymer Composite
,”
J. Appl. Polym. Sci.
,
49
(
9
), pp.
1625
1634
.
30.
Nielsen
,
L. E.
,
1974
, “
The Thermal and Electrical Conductivity of Two-Phase Systems
,”
Ind. Eng. Chem. Fundam.
,
13
(
1
), pp.
17
20
.
31.
Pietrak
,
K.
, and
Wisniewski
,
T. S.
,
2015
, “
A Review of Models for Effective Thermal Conductivity of Composite Materials
,”
J. Power Technol.
,
95
(
1
), pp.
12
24
.
32.
Rae
,
P. J.
, and
Dattelbaum
,
D. M.
,
2004
, “
The Properties of Poly(Tetrafluoroethylene) (PTFE) in Compression
,”
Polymer
,
45
(
22
), pp.
7615
7625
.
You do not currently have access to this content.