A nondestructive photoelastic method is presented for characterizing surface microcracks in monocrystalline silicon wafers, calculating the strength of the wafers, and predicting Weibull parameters under various loading conditions. Defects are first classified from through thickness infrared photoelastic images using a support vector machine learning algorithm. Characteristic wafer strength is shown to vary with the angle of applied uniaxial tensile load, showing greater strength when loaded perpendicular to the direction of wire motion than when loaded along the direction of wire motion. Observed variations in characteristic strength and Weibull shape modulus with applied tensile loading direction stem from the distribution of crack orientations and the bulk stress field acting on the microcracks. Using this method it is possible to improve manufacturing processes for silicon wafers by rapidly, accurately, and nondestructively characterizing large batches in an automated way.

This content is only available via PDF.
You do not currently have access to this content.