Abstract

Nano-aluminum powders and nano-ZrO2 reinforcement particles were mechanically milled and hot-pressed to produce Al–ZrO2 nanocomposites. Microstructure and mechanical properties of Al–ZrO2 nanocomposites were investigated using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses and by performing hardness and compression testing. Uniform particle distribution was obtained up to 3 wt% of nano-ZrO2 particles using nano-sized aluminum powders as matrix powders and by applying a mechanical milling process. As the nano-ZrO2 reinforcement particles were uniformly distributed in the matrix, the relative density of the Al–ZrO2 nanocomposites increased up to 3 wt% nano-ZrO2 particles with an increase in milling time; on the other hand, the relative density decreased and the porosity increased with high-weight fractions (>3 wt%) of nano-ZrO2 particles due to the negative combined effect of less densification and an increase in the number of particle clusters. The hardness and compressive strength of the Al–ZrO2 nanocomposites improved despite increased porosity. However, the compressive strength of Al–ZrO2 nanocomposites with a high amount (>3 wt%) of nano-ZrO2 particles began to decrease due to the negative combined effect of the less densification of the powder particles and the clustering of nano-ZrO2 reinforcement particles. The brittle-ductile fracture occurred in the Al–ZrO2 nanocomposites.

References

1.
Ajay Kumar
,
P.
,
Rohatqi
,
P.
, and
Weiss
,
D.
,
2020
, “
50 Years of Foundry-Produced Metal Matrix Composites and Future Opportunities
,”
Int. J. Metalcast.
,
14
(
2
), pp.
291
317
.
2.
Singh
,
S.
, and
Pal
,
K.
,
2020
, “
Influence of Texture Evolution on Mechanical and Damping Properties of SiC/Li2ZrO3/Al Composite Through Friction Stir Processing
,”
ASME J. Eng. Mater. Technol.
,
142
(
2
), p.
021011
.
3.
Rahmani
,
K.
,
Majzoobi
,
G. H.
,
Sadooghi
,
A.
, and
Kashfi
,
M.
,
2020
, “
Mechanical and Physical Characterization of Mg-TiO2 and Mg-ZrO2 Nanocomposites Produced by Hot-Pressing
,”
Mater. Chem. Phys.
,
246
, p.
122844
.
4.
Jeyasimman
,
D.
,
Sivaskaran
,
S.
,
Sivaprasad
,
K.
,
Narayanasamsy
,
R.
, and
Kambali
,
R. S.
,
2014
, “
An Investigation of the Synthesis, Consolidation and Mechanical Behaviour of Al6061 Nanocomposites Reinforced by TiC Via Mechanical Alloying
,”
Mater. Des.
,
57
, pp.
394
404
.
5.
Adebisi
,
A. A.
,
Maleque
,
M. A.
, and
Rahman
,
M. M.
,
2011
, “
Metal Matrix Composite Brake Rotors: Historical Development and Product Life Cycle Analysis
,”
Int. J. Autom. Mech. Eng.
,
4
, pp.
471
480
.
6.
Chen
,
J.-P.
,
Gu
,
L.
, and
He
,
G.-J.
,
2020
, “
A Review on Conventional and Nonconventional Machining of SiC Particle-Reinforced Aluminium Matrix Composites
,”
Adv. Manuf.
,
8
(
3
), pp.
279
315
.
7.
Kalavathi
,
V.
, and
Bhuyan
,
R. K.
,
2019
, “
A Detailed Study on Zirconium and its Applications in Manufacturing Process With Combinations of Other Metals, Oxides and Alloys—A Review
,”
Mater. Today Proc.
,
19
(
2
), pp.
781
786
.
8.
Madhusudhan
,
M.
,
Naveen
,
G. J.
, and
Mahesha
,
K.
,
2017
, “
Characterization of AA7068-ZrO2 Reinforced Metal Matrix Composites
,”
Mater. Today Proc.
,
4
(
2
), pp.
3122
3130
.
9.
Bhaskar
,
S.
,
Kumar
,
M.
, and
Patnaik
,
A.
,
2020
, “
A Review on Tribological and Mechanical Properties of Al Alloy Composites
,”
Mater. Today Proc.
,
25
(
4
), pp.
810
815
.
10.
Banerjee
,
S.
,
Poria
,
S.
,
Sutradhar
,
G.
, and
Sahoo
,
P.
,
2019
, “
Corrosion Behavior of AZ31-WC Nano-Composites
,”
J. Magnesium Alloy
,
7
(
4
), pp.
681
695
.
11.
Bhoi
,
N. K.
,
Singh
,
H.
, and
Pratap
,
S.
,
2019
, “
Developments in the Aluminum Metal Matrix Composites Reinforced by Micro/Nano Particles—A Review
,”
J. Compos. Mater.
,
54
(
6
), pp.
813
833
.
12.
Eftekharinia
,
H.
,
Amadeh
,
A. A.
,
Khodabandeh
,
A.
, and
Paidar
,
M.
,
2020
, “
Microstructure and Wear Behavior of AA6061/SiC Surface Composite Fabricated Via Friction Stir Processing With Different Pins and Passes
,”
Rare Met.
,
39
, pp.
429
435
.
13.
El-Kady
,
O.
, and
Fathy
,
A.
,
2014
, “
Effect of SiC Particle Size on the Physical and Mechanical Properties of Extruded Al Matrix Nanocomposites
,”
Mater. Des.
,
54
, pp.
348
353
.
14.
Hesabi
,
Z. R.
,
Simchi
,
A.
, and
Reihani
,
S. M. S.
,
2006
, “
Structural Evolution During Mechanical Milling of Nanometric and Micrometric Al2O3 Reinforced Al Matrix Composites
,”
Mater. Sci. Eng. A
,
428
(
1–2
), pp.
159
168
.
15.
Zhang
,
Z.
, and
Chen
,
D. L.
,
2006
, “
Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength
,”
Scr. Mater.
,
54
(
7
), pp.
1321
1326
.
16.
Casati
,
R.
, and
Vedani
,
M.
,
2014
, “
Metal Matrix Composites Reinforced by Nano-Particles—A Review
,”
Metals
,
4
(
1
), pp.
65
83
.
17.
Hassold
,
G. N.
,
Holm
,
E. A.
, and
Srolovitz
,
D. J.
,
1990
, “
Effects of Particle Size on Inhibited Grain Growth
,”
Scr. Metall. Mater.
,
24
(
1
), pp.
101
1069
.
18.
Hübler
,
D.
,
Ghasemi
,
A.
,
Riedel
,
R.
,
Fleck
,
C.
, and
Kamrani
,
S.
,
2020
, “
Effect of Hot Isostatic Pressing on Densification, Microstructure and Nanoindentation Behaviour of Mg–SiC Nanocomposites
,”
J. Mater. Sci.
,
55
(
24
), pp.
10582
10592
.
19.
Geng
,
R.
,
Qiu
,
F.
, and
Jiang
,
Q.-C.
,
2018
, “
Reinforcement in Al Matrix Composites: A Review of Strengthening Behavior of Nano-Sized Particles
,”
Adv. Eng. Mater.
,
20
(
9
), p.
1701089
.
20.
Allalhesabi
,
S.
,
Manafi
,
S. A.
, and
Borhani
,
E.
,
2015
, “
The Structural and Mechanical Properties of Al-2.5%wt. B4C Metal Matrix Nano Composite Fabricated by Mechanical Alloying
,”
Mech. Adv. Compos. Struct.
,
2
(
1
), pp.
39
44
.
21.
Ferguson
,
J. B.
,
Lopez
,
H. F.
,
Rohatgi
,
P. K.
,
Cho
,
K.
, and
Kim
,
C.-S.
,
2014
, “
Impact of Volume Fraction and Size of Reinforcement Particles on the Grain Size in Metal-Matrix Micro and Nanocomposites
,”
Metall. Mater. Trans. A
,
45
(
9
), pp.
4055
4061
.
22.
Bembalge
,
O. B.
, and
Panigrahi
,
S. K.
,
2018
, “
Development and Strengthening Mechanisms of Bulk Ultrafine Grained AA6063/SiC Composite Sheets With Varying Reinforcement Size Ranging From Nano to Micro Domain
,”
J. Alloys Compd.
,
766
, pp.
355
372
.
23.
Kamrani
,
S.
,
Simchi
,
A.
,
Riedel
,
R.
, and
Reihani
,
S. M. S.
,
2007
, “
Effect of Reinforcement Volume Fraction on Mechanical Alloying of Al–SiC Nanocomposite Powders
,”
Powder Metall.
,
50
(
3
), pp.
276
282
.
24.
Sun
,
C.
,
Song
,
M.
,
Wang
,
Z.
, and
He
,
Y.
,
2011
, “
Effect of Particle Size on the Microstructures and Mechanical Properties of SiC-Reinforced Pure Aluminum Composites
,”
J. Mater. Eng. Perform.
,
20
(
9
), pp.
1606
1612
.
25.
Ramanathan
,
A.
,
Krishnan
,
P. K.
, and
Muraliraja
,
R.
,
2019
, “
A Review on the Production of Metal Matrix Composites Through Stir Casting—Furnace Design, Properties, Challenges, and Research Opportunities
,”
J. Manuf. Process.
,
42
, pp.
213
245
.
26.
Hashmi
,
T. Q.
,
2014
, “
Liquid State Methods of Producing Metal Matrix Composites: A Review Article
,”
IJRMET
,
5
(
1
), pp.
103
106
.
27.
Sahoo
,
B. P.
, and
Das
,
D.
,
2019
, “
Critical Review on Liquid State Processing of Aluminium Based Metal Matrix Nano-Composites
,”
Mater. Today Proc.
,
19
(
2
), pp.
493
500
.
28.
Idrisi
,
A. H.
, and
Mourad
,
A. H. I.
,
2019
, “
Conventional Stir Casting Versus Ultrasonic Assisted Stir Casting Process: Mechanical and Physical Characteristics of AMCs
,”
J. Alloys Compd.
,
805
, pp.
502
508
.
29.
Bai
,
W.
,
Roy
,
A.
,
Sun
,
R.
, and
Silberschimidt
,
V. V.
,
2019
, “
Enhanced Machinability of SiC-Reinforced Metal-Matrix Composite With Hybrid Turning
,”
J. Mater. Process. Technol.
,
268
, pp.
149
161
.
30.
Ceschini
,
L.
,
Dahle
,
A.
,
Gupta
,
M.
,
Jarfors
,
A. E. W.
,
Jayalakshmi
,
S.
,
Morri
,
A.
,
Rotundo
,
F.
,
Toschi
,
S.
, and
Singh
,
R. A.
,
2017
,
Aluminum and Magnesium Metal Matrix Nanocomposites
,
Springer Nature
,
Singapore
.
31.
Bharath
,
V.
,
Nagaral
,
M.
,
Auradib
,
V.
, and
Kori
,
S. A.
,
2014
, “
Preparation of 6061Al-Al2O3 MMCs by Stir Casting and Evaluation of Mechanical and Wear Properties
,”
Proc. Mater. Sci.
,
6
, pp.
1658
1667
.
32.
Behera
,
M. P.
,
Dougherty
,
T.
, and
Singamneni
,
S.
,
2019
, “
Conventional and Additive Manufacturing With Metal Matrix Composite: A Perspective
,”
Proc. Manuf.
,
30
, pp.
159
166
.
33.
Mosisa
,
E.
,
Bazhin
,
V. Y.
, and
Savchenkov
,
S.
,
2016
, “
Review on Nano Particle Reinforced Al Metal Matrix Composites
,”
Res. J. Appl. Sci.
,
11
(
5
), pp.
188
196
.
34.
Prabhu
,
B.
,
Suryanarayana
,
C.
, and
Vaidyanathan
,
R.
,
2006
, “
Synthesis and Characterization of High Volume Fraction Al–Al2O3 Nanocomposite Powders by High-Energy Milling
,”
Mater. Sci. Eng. A
,
425
(
1–2
), pp.
192
200
.
35.
Fathy
,
A.
,
Wagih
,
A.
, and
Abu-Oqail
,
A.
,
2019
, “
Effect of ZrO2 Content on Properties of Cu-ZrO2 Nanocomposites Synthesized by Optimized High Energy Ball Milling
,”
Ceram. Int.
,
45
(
2
), pp.
2319
2329
.
36.
Park
,
K.
,
Park
,
J.
, and
Kwon
,
H.
,
2018
, “
Effect of Intermetallic Compound on the Al-Mg Composite Materials Fabricated by Mechanical Ball Milling and Spark Plasma Sintering
,”
J. Alloys Compd.
,
739
, pp.
311
318
.
37.
Zhou
,
H.
,
Hu
,
L.
,
Sun
,
H.
, and
Chen
,
X.
,
2015
, “
Synthesis of Nanocrystalline Mg-Based Mg–Ti Composite Powders by Mechanical Milling
,”
Mater. Charact.
,
106
, pp.
44
51
.
38.
Phasha
,
M.
,
Maweja
,
K.
, and
Babst
,
C.
,
2010
, “
Mechanical Alloying by Ball Milling of Ti and Mg Elemental Powders: Operation Condition Considerations
,”
J. Alloys Compd.
,
492
(
1–2
), pp.
201
207
.
39.
Wu
,
C.
,
Ma
,
K.
,
Wu
,
J.
,
Fang
,
P.
,
Luo
,
G.
,
Chen
,
F.
,
Shen
,
Q.
,
Zhang
,
L.
,
Schoenung
,
J. M.
, and
Lavernia
,
E. J.
,
2016
, “
Influence of Particle Size and Spatial Distribution of B4C Reinforcement on the Microstructure and Mechanical Behavior of Precipitation Strengthened Al Alloy Matrix Composites
,”
Mater. Sci. Eng.
,
675
, pp.
421
430
.
40.
Eltaher
,
M. A.
,
Wagih
,
A.
,
Melaibari
,
A.
,
Fathy
,
A.
, and
Lubineau
,
G.
,
2020
, “
Effect of Al2O3 Particles on Mechanical and Tribological Properties of Al–Mg Dual Matrix Nanocomposites
,”
Ceram. Int.
,
46
(
5
), pp.
5779
5787
.
41.
Sadooghi
,
A.
, and
Hashemi
,
S. J.
,
2019
, “
Investigating the Influence of ZnO, CuO, Al2O3 Reinforcing Nanoparticles on Strength and Wearing Properties of Aluminum Matrix Nanocomposites Produced by Powder Metallurgy Process
,”
Mater. Res. Express
,
6
(
10
), p.
105019
.
42.
Cabeza
,
M.
,
Feijoo
,
I.
,
Merino
,
P.
,
Pena
,
G.
,
Perez
,
M. C.
,
Cruz
,
S.
, and
Rey
,
P.
,
2017
, “
Effect of High Energy Ball Milling on the Morphology, Microstructure and Properties of Nano-Sized TiC Particle-Reinforced 6005 Aluminium Alloy Matrix Composite
,”
Powder Technol.
,
321
, pp.
31
43
.
43.
Sivakumar
,
G.
,
Ananthi
,
V.
, and
Ramanathan
,
S.
,
2017
, “
Production and Mechanical Properties of Nano SiC Particle Reinforced Ti−6Al−4V Matrix Composite
,”
Trans. Nonferrous Met. Soc. China
,
27
(
1
), pp.
82
90
.
44.
Han
,
Q.
,
Setchi
,
R.
, and
Evans
,
S. L.
,
2017
, “
Characterisation and Milling Time Optimisation of Nanocrystalline Aluminium Powder for Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
1429
1438
.
45.
Kaufman
,
J. G.
,
2018
, “Properties of Pure Aluminum,”
Aluminum Science and Technology
,
K.
Anderson
,
J.
Weritz
, and
J. G.
Kaufman
, ed.,
ASM International
,
Materials Park, OH
, pp.
31
43
.
46.
Ingel
,
R. P.
, and
Lewis
,
D. L.
,
1986
, “
Lattice Parameters and Density for Y2O3-Stabilized ZrO2
,”
J. Am. Ceram. Soc.
,
69
(
4
), pp.
325
332
.
47.
Scherrer
,
P.
,
1918
, “
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen
,”
Math. Phys. Kl
,
2
, pp.
98
100
.
48.
Shashanka
,
R.
, and
Debasis
,
C.
,
2017
,
Ball Milled Nano-Structured Stainless Steel Powders
,
Educreation Publishing
,
New Delhi
, India.
49.
Gaffet
,
E.
, and
Le Caër
,
G.
,
2008
, “Mechanical Milling,”
Nanomaterials and Nanochemistry
,
C.
Bréchignac
,
P.
Houdy
, and
M.
Lahmani
, eds.,
Springer
,
Berlin
, pp.
455
471
.
50.
Popescu
,
I. N.
, and
Vidu
,
R.
,
2018
, “
Densification Mechanism, Elastic-Plastic Deformations and Stress–Strain Relations of Compacted Metal-Ceramic Powder Mixtures (Review)
,”
Sci. Bull. Valahia Univ. Mater. Mec.
,
16
(
14
), pp.
7
12
.
51.
Tahamtan
,
S.
,
Halvaee
,
A.
,
Emamy
,
M.
, and
Zabihi
,
M. S.
,
2013
, “
Fabrication of Al/A206–Al2O3 Nano/Micro Composite by Combining Ball Milling and Stir Casting Technology
,”
Mater. Des.
,
49
, pp.
347
359
.
52.
Amini
,
M.
,
Rahimipour
,
M. R.
,
Tayebifard
,
S. A.
, and
Palizdar
,
Y.
,
2020
, “
Effect of Milling Time on XRD Phases and Microstructure of a Novel Al67Cu20Fe10B3 Quasicrystalline Alloy
,”
Mater. Res. Express
,
7
(
6
), p.
065011
.
53.
Muley
,
A. V.
,
Aravindan
,
S.
, and
Singh
,
I. P.
,
2015
, “
Nano and Hybrid Aluminum Based Metal Matrix Composites: An Overview
,”
Manuf. Rev.
,
2
(
15
), pp.
1
13
.
54.
Mohsen
,
A. M.
, and
Shaban
,
O.
,
2013
, “
Plasticity and Microstructure of A356 Matrix Nano Composites
,”
J. King Saud Univ. Eng. Sci.
,
25
(
1
), pp.
41
48
.
55.
Suryanarayana
,
C.
, and
Ivanov
,
E.
,
2013
, “Mechanochemical Synthesis of Nanocrystalline Metal Powders,”
Advances in Powder Metallurgy—Properties, Processing and Applications
,
I.
Chang
, and
Y.
Zhao
, ed.,
Woodhead Publishing
,
Cambridge
, pp.
42
68
.
56.
Jeong
,
G.
,
Park
,
J.
,
Nam
,
S.
,
Shin
,
S.-E.
,
Shin
,
J.
,
Bae
,
D.
, and
Choi
,
H.
,
2015
, “
The Effect of Grain Size on the Mechanical Properties of Aluminum
,”
Arch. Metall. Mater.
,
60
(
2
), pp.
1287
1291
.
57.
Naik
,
S. N.
, and
Walley
,
S. M.
,
2020
, “
The Hall–Petch and Inverse Hall–Petch Relations and the Hardness of Nanocrystalline Metals
,”
J. Mater. Sci.
,
55
(
1
), pp.
2661
2681
.
58.
Xu
,
W.
, and
Dávila
,
L. P.
,
2017
, “
Size Dependence of Elastic Mechanical Properties of Nanocrystalline Aluminum
,”
Mater. Sci. Eng. A
,
692
, pp.
90
94
.
59.
Fathy
,
A.
,
Sadoun
,
A.
, and
Abdelhameed
,
M.
,
2014
, “
Effect of Matrix/Reinforcement Particle Size Ratio (PSR) on the Mechanical Properties of Extruded Al–SiC Composites
,”
Int. J. Adv. Manuf. Technol.
,
73
(
5–8
), pp.
1049
1056
.
60.
Slipenyuk
,
A.
,
Kuprin
,
V.
,
Milman
,
Y.
,
Spowart
,
J. E.
, and
Miracle
,
D.
,
2004
, “
The Effect of Matrix to Reinforcement Particle Size Ratio (PSR) on the Microstructure and Mechanical Properties of a P/M Processed AlCuMn/SiCp MMC
,”
Mater. Sci. Eng. A
,
381
(
1–2
), pp.
165
170
.
61.
Luo
,
Y.
,
Wu
,
S. C.
,
Hu
,
Y. N.
, and
Fu
,
Y. N.
,
2018
, “
Cracking Evolution Behaviors of Lightweight Materials Based on In Situ Synchrotron X-Ray Tomography: A Review
,”
Front. Mech. Eng.
,
13
(
4
), pp.
461
481
.
62.
Fogagnolo
,
J. B.
,
Ruiz-Navas
,
E. M.
,
Robert
,
M. H.
, and
Torralba
,
J. M.
,
2003
, “
The Effects of Mechanical Alloying on the Compressibility of Aluminium Matrix Composite Powder
,”
Mater. Sci. Eng. A
,
355
(
1–2
), pp.
50
55
.
63.
Majzoobi
,
G. H.
,
Rahmani
,
K.
, and
Atrian
,
A.
,
2018
, “
Temperature Effect on Mechanical and Tribological Characterization of Mg–SiC Nanocomposite Fabricated by High Rate Compaction
,”
Mater. Res. Express
,
5
(
1
), p.
015046
.
64.
Razavi Hesabi
,
Z.
,
Hafizpour
,
H. R.
, and
Simchi
,
A.
,
2007
, “
An Investigation on the Compressibility of Aluminum/Nano-Alumina Composite Powder Prepared by Blending and Mechanical Milling
,”
Mater. Sci. Eng. A
,
454
, pp.
89
98
.
65.
Erturun
,
V.
,
Çetin
,
S.
, and
Sahin
,
O.
,
2020
, “
Investigation of Microstructure of Aluminum Based Composite Material Obtained by Mechanical Alloying
,”
Met. Mater. Int.
66.
Vani
,
V. V.
, and
Chak
,
S. K.
,
2018
, “
The Effect of Process Parameters in Aluminum Metal Matrix Composites With Powder Metallurgy
,”
Manuf. Rev.
,
5
(
7
), pp.
1
13
.
67.
Zhang
,
Z.
, and
Chen
,
D. L.
,
2008
, “
Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites
,”
Mater. Sci. Eng. A
,
483–484
, pp.
148
152
.
68.
Chawla
,
N.
, and
Shen
,
Y.-L.
,
2001
, “
Mechanical Behavior of Particle Reinforced Metal Matrix Composites
,”
Adv. Eng. Mater.
,
3
(
6
), pp.
357
370
.
69.
Kim
,
C.-S.
,
Cho
,
K.
,
Manjili
,
M. H.
, and
Nezafati
,
M.
,
2017
, “
Mechanical Performance of Particulate-Reinforced Al Metal-Matrix Composites (MMCs) and Al Metal-Matrix Nano-Composites (MMNCs)
,”
J. Mater. Sci.
,
52
(
23
), pp.
13319
13349
.
70.
Sun
,
Y.
,
Zhao
,
Y.
,
Wu
,
J.
,
Kai
,
X.
,
Zhang
,
Z.
,
Fang
,
Z.
, and
Xia
,
C.
,
2020
, “
Effects of Particulate Agglomerated Degree on Deformation Behaviors and Mechanical Properties of In-Situ ZrB2 Nanoparticles Reinforced AA6016 Matrix Composites by Finite Element Modeling
,”
Mater. Res. Express
,
7
(
3
), p.
036507
.
71.
Saba
,
F.
,
Zhang
,
F.
,
Liu
,
S.
, and
Liu
,
T.
,
2019
, “
Reinforcement Size Dependence of Mechanical Properties and Strengthening Mechanisms in Diamond Reinforced Titanium Metal Matrix Composites
,”
Compos. B: Eng.
,
167
, pp.
7
19
.
72.
Kouzeli
,
M.
, and
Mortensen
,
A.
,
2002
, “
Size Dependent Strengthening in Particle Reinforced Aluminum
,”
Acta Mater.
,
50
(
1
), pp.
39
51
.
You do not currently have access to this content.