This paper proposes a design optimization method in which simplified structural models and standard mathematical programming methods are employed in order to optimize the dynamic characteristics of machine-tool structures in practical applications. This method is composed of three phases: (1) simplification, (2) optimization, and (3) realization. As design variables employed in this optimization are greatly reduced, machine-tool structures are optimized effectively in practice. With large design changes being conducted through this multiphase procedure, dynamic characteristics of machine tools can be greatly improved. This method is demonstrated on a structural model of a vertical lathe.
Issue Section:
Design Automation Papers
This content is only available via PDF.
Copyright © 1983
by ASME
You do not currently have access to this content.