Undercutting is a serious problem in designing spiral bevel gears with small numbers of teeth. Conditions of undercutting for spiral bevel gears vary with the manufacturing methods. Based on the theory of gearing [1], the tooth geometry of the Gleason type circular-cut spiral bevel gear is mathematically modeled. The sufficient and necessary conditions for the existence and regularity of the generated gear tooth surfaces are investigated. The conditions of undercutting for a circular-cut spiral bevel gear are defined by the sufficient conditions of the regular gear tooth surface. The derived undercutting equations can be applicable for checking the undercutting conditions of spiral bevel gears manufactured by the Gleason Duplex Method, Helical Duplex Method, Fixed Setting Method, and Modified Roll Method. An example is included to illustrate the application of the proposed undercut checking equations.

This content is only available via PDF.
You do not currently have access to this content.