Shape memory alloy hybrid composite materials have demonstrated numerous control capabilities. One such capability is the controlled bending of structures. In this paper the response of a cantilevered beam to an internal actuator is examined. The modeling of the compressive force exerted by the induced strain of the actuator on the beam is discussed. The results obtained from treating the force as an external follower force are presented. The response to an internal force such as exerted by an internal shape memory alloy actuator is quite different from that produced by loads due to sources external to the beam. Contrary to normal expectations such an internal force although compressive does not produce any buckling tendencies or any other instabilities in the beam. This principle which is already in use in the design of civil engineering structures is discussed in detail. If the actuators are embedded off of the neutral axis, then due to the eccentricity the beam bends, but again without any buckling tendency. The experimental results obtained for this configuration are also presented.

You do not currently have access to this content.