Structural optimization procedures usually start from a given design topology and vary proportions or boundary shapes of the design to achieve optimality of an objective under various constraints. This article presents examples of the application of a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated. A three-phase design process is used. In Phase I, an optimal initial topology is created by a homogenization method as a gray-scale image. In Phase II, the image is transformed to a realizable design using computer vision techniques. In Phase III, the design is parameterized and treated in detail by conventional size and shape optimization techniques. Fully-automated procedures for optimization of two-dimensional solid structures are outlined, and several practical design problems for this type of structures are solved using the proposed procedure, including a crane hook and a bicycle frame.

You do not currently have access to this content.