For a given high-speed machinery, a significant source of the internally induced vibrational excitation is the presence of high frequency harmonics in the trajectories that the system is forced to follow. This paper presents a Bernstein-Be´zier form of harmonic trajectory patterns for synthesizing low-harmonic trajectories. Similar to Bernstein-Be´zier polynomial curves, Bernstein-Be´zier harmonic trajectories can be defined either explicitly using Bernstein-Be´zier basis harmonics or recursively using the harmonic deCasteljau algorithm. The second part of the paper demonstrates how a Bernstein-Be´zier trajectory can be combined with the inverse dynamics of a robot manipulator for synthesizing a joint trajectory that demands “minimal” dynamic response from its actuators. An example involving a planar 2R robot is also presented.

1.
Alfeld, P., Neamtu, M., Schumaker, L. L., 1995, “Circular Bernstein-Be´zier Polynomials,” Mathematical Methods for Curves and Surfaces, Daehlen, M. Lyche, T. and Schumaker, L. L., eds., Vanderbilt Press, Nashville, pp. 11–20.
2.
Chand
S.
, and
Doty
R.
,
1985
, “
Online Polynomial Trajectories for Robot Manipulators
,”
International Journal of Robotics Research
, Vol.
4
, No.
2
, pp
38
48
.
3.
Craig, J. J., 1989, Introduction to Robotics: Mechanics and Control, 2nd ed., Addison Wesley, Reading, MA.
4.
Ge, Q. J., Srinivasan, L., and Rastegar, J., 1996, “Low-harmonic Rational Be´zier Curves for Trajectory Generation of High-Speed Machinery,” Computer Aided Geometric Design, to appear.
5.
Fardanesh
B.
, and
Rastegar
J.
,
1992
, “
A New Model Based Tracking Controller for Robot Manipulators Using The Trajectory Pattern Inverse Dynamics
,”
IEEE Trans. Robotics and Automation
,
RA-8
(
2
), pp.
279
285
.
6.
Farin, G., 1993. Curves and Surfaces for Computer Aided Geometric Design. 3rd ed., Academic Press.
7.
Fu, K. S., Gonzalez, R. C., and Lee, C. S, G., 1987, ROBOTICS: Control, Sensing, Vision, and Intelligence, McGraw-Hill, 580 pp.
8.
Lin
C. S.
,
Chang
P. R.
, and
Luh
J. Y. S.
,
1983
, “
Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots
,”
IEEE Trans. Automatic Control
,
AC-28
(
12
), pp.
1066
1073
.
9.
Lyche
T.
, and
Winther
R.
,
1979
, “
A Stable Recurrence Relation for Trigonometric B-Splines
,”
J. of Approx. Theory
, Vol.
25
, pp.
266
279
.
10.
Piegl, L., and Tiller, W., 1995, The NURBS Book, Springer, Berlin.
11.
Pottmann
H.
,
1993
, “
The Geometry of Tchebycheffian Splines
,”
Computer Aided Geometric Design
, Vol.
10
, pp.
181
210
.
12.
Rastegar, J., Tu, Q., and Tangerman, F., 1993, “Trajectory Synthesis and Inverse Dynamics Formulation for Minimal Vibrational Excitation for Flexible Structures Based on Trajectory Patterns,” American Control Conference, San Francisco, CA, Vol. 3, pp. 2716–2720.
13.
Rastegar, J., Khorrami, F., and Retchkiman, Z., 1994, “Inversion of Nonlinear Systems Via Trajectory Pattern Method,” Proceedings of the 33rd Conf. on Decision and Control, Orlando, FL, Vol. 3, pp. 2382–2387.
14.
Sa´nchez-Reyes
J.
,
1990
, “
Single Valued Curves in Polar Coordinates
,”
Computer Aided Design
, Vol.
22
, pp.
19
26
.
15.
Sa´nchez-Reyes
J.
,
1992
, “
Single Valued Spline Curves in Polar Coordinates
,”
Computer Aided Design
, Vol.
24
, pp.
307
315
.
16.
Schoenberg
I. J.
,
1964
, “
On Trigonometric Spline Interpolation
,”
J. Math. Mech.
, Vol.
13
, pp.
795
825
.
17.
Simon
D.
, and
Isik
C.
,
1991
, “
Optimal Trigonometric Robot Joint Trajectories
,”
Robotica
, Vol.
9
, pp.
379
386
.
18.
Simon, D., and Isik, C., 1994, “Computational Complexity and Path Error Analysis of Trigonometric Joint Trajectories,” Proc. American Control Conference, Baltimore, MD, pp. 1752–1756.
19.
Thompson, S., and Patel, R., 1987, “Formulation of Joint Trajectories for Industrial Robots Using B-splines,” IEEE Trans. on Industrial Electronics, Vol. IE-34.
20.
Tu
Q.
,
Rastegar
J.
, and
Singh
R. J.
,
1994
, “
Trajectory Synthesis and Inverse Dynamics Model Formulation and Control of Tip Motion of a High Performance Flexible Positioning System
,”
Mechanism and Machine Theory
, Vol.
29
, No.
7
, pp.
959
968
.
21.
Wang
F.-C.
, and
Yang
D. C. H.
,
1993
, “
Nearly Arc-Length Parameterized Quintic-Spline Interpolation for Precision Machining
,”
Computer-Aided Design
, Vol.
25
, No.
5
, pp.
281
288
.
This content is only available via PDF.
You do not currently have access to this content.