This paper presents a method of determining the exact point accessibility for an articulated manipulator with joint limits in both the regional and wrist structures. The method is based on the derivation of constraint equations, which define boundary curves on the service sphere separating accessible and non-accessible regions. These constraint equations are defined individually in each specially selected coordinate frame, called the “neutral coordinate frame.” The boundary curves on the service sphere may arise from both regional structure joint limits and wrist joint limits. The resulting constraint equations are solved numerically, and the accessibility regions of any given point can be plotted on its service sphere automatically. The method is demonstrated on a simple articulated manipulator with an Euler angle wrist. [S1050-0472(00)00103-3]

1.
Yang
,
D. C. H.
, and
Lai
,
Z.
,
1985
, “
On the Dexterity of Robotic Manipulators—Service Angle
,”
ASME J. Mech. Trans. Auto. Des.
,
107
, pp.
262
270
.
2.
Abdel-Malek
,
K.
,
1996
, “
Criterion for the Locality of a Manipulator Arm With Respect to an Operating Point
,”
IMechE J. Eng. Manufac., Proceedings Part B
,
210
, No.
B4
, pp.
385
394
.
3.
Roth, B., 1976, “Performance Evaluation of Manipulators from a Kinematic Viewpoint,” in Performance Evaluation of Programmable Robots and Manipulators, NBS Special Publication No. 459, October, pp. 39–61.
4.
Gupta
,
K. C.
and
Roth
,
B.
,
1982
, “
Design Considerations for Manipulator Workspace
,”
ASME J. Mech. Des.
,
104
, pp.
704
711
.
5.
Kumar
,
A.
, and
Waldron
,
K.
,
1981
, “
The Workspaces of a Mechanical Manipulator
,”
ASME J. Mech. Des.
,
103
, pp.
665
672
.
6.
Vijay, K., Tsai, R., and Waldron, K., 1985, “Geometric Optimization of Manipulator Structures for Working Volume and Dexterity,” IEEE 1985 International Conference on Robotics and Automation, St. Louis, Missouri, March 25–28, pp. 228–236.
7.
Lai
,
Z.
, and
Menq
,
C.
,
1988
, “
The Dexterous Workspace of Simple Manipulators
,”
IEEE J. Rob. Autom.
,
4
, No.
1
, pp.
99
103
.
8.
Yang
,
D. C. H.
,
Lin
,
E.
, and
Cheng
,
S.
,
1990
, “
Primary Workspace of Industrial Robots with Roll-Pitch-Yaw Wrist
,”
ASME J. Mech. Des.
,
112
, No.
3
, pp.
347
353
.
9.
Huag
,
E. J.
,
Wang
,
J. Y.
, and
Wu
,
J. K.
,
1992
, “
Dextrous of Workspace of Manipulators, I. Analytical Criteria
,”
Mech. Struct. Mach.
,
20
, No.
3
, pp.
321
361
.
10.
Yang
,
F.
, and
Huag
,
E. J.
,
1994
, “
Numerical Analysis of the Kinematic Dexterity of Mechanisms
,”
Trans. ASME J. Mech. Des.
,
116
, No.
1
, pp.
119
126
.
11.
Abdel Malek
,
K.
, and
Yeh
,
H. J.
,
1997
, “
Analytical Boundary of The Workspace for General 3-DOF Mechanism
,”
Int. J. Rob. Res.
16
, No.
2
, pp.
198
213
.
12.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
, No.
2
, pp.
3
9
.
13.
Park
,
F.
, and
Brockett
,
R.
,
1994
, “
Kinematic Dexterity of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
13
, No.
1
, pp.
1
15
.
14.
Yang
,
D. C. H.
, and
Chiueh
,
T.
,
1986
, “
Work-Area of Six-Joint Robots with Fixed Hand Orientation
,”
Int. J. Rob. Res.
,
1
, No.
1
, pp.
23
32
.
15.
Gupta
,
K. C.
,
1986
, “
Rotatability Considerations for Spherical Four-Bar Linkages with Applications to Robot Wrist Design
,”
ASME J. Mech., Transm., Autom. Des.
,
108
, No.
3
, pp.
387
391
.
16.
Trabia
,
M.
, and
Davidson
,
J. K.
,
1989
, “
Design Conditions for the Orientation and Attitude of a Robot Tool Carried by a 3-R Spherical Wrist
,”
ASME J. Mech., Transm., Autom. Des.
,
111
, No.
2
, pp.
117
187
.
17.
Emiris
,
D.
, and
Tourassis
,
V.
,
1992
, “
The Reachability and Dexterity of Elbow and Dual-Elbow Robot Manipulators
,”
J. Rob. Syst.
,
9
, No.
8
, pp.
1021
1041
.
18.
Basavaraj
,
U.
, and
Duffy
,
J.
,
1993
, “
End-Effector Motion Capabilities of Serial Manipulators
,”
Int. J. Rob. Res.
,
12
, No.
2
, April, pp.
132
145
.
19.
Denavit
,
J.
, and
Hartenberg
,
R.
,
1955
, “
A Kinematic Notation for Lower p Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
, June, pp.
215
221
.
20.
Rauchfuss, J., 1997, “Exact Point Accessibility of a Robotic Manipulator,” Ph.D. Dissertation, University of California, Los Angeles.
21.
Fichter
,
E. F.
, and
Hunt
,
K. H.
,
1975
, “
The Fecund Torus, Its Bitangent-Circles and Derived Linkages
,”
Mech. Mach. Theory
,
10
, pp.
167
176
.
You do not currently have access to this content.