Single Degree-of-freedom Coupled Serial Chain (SDCSC) mechanisms form a novel class of modular and compact mechanisms with a single degree-of-freedom, suitable for a number of manipulation tasks. Such SDCSC mechanisms take advantage of the hardware constraints between the articulations of a serial-chain linkage, created using gear-trains or belt/pulley drives, to guide the end-effector motions and forces. In this paper, we examine the dimensional synthesis of such SDCSC mechanisms to perform desired planar manipulation tasks, taking into account task specifications on both end-effector motions and forces. Our solution approach combines precision point synthesis with optimization to realize optimal mechanisms, which satisfy the design specifications exactly at the selected precision points and approximate them in the least-squares sense elsewhere along a specified trajectory. The designed mechanisms can guide a rigid body through several positions while supporting arbitrarily specified external loads. Furthermore, torsional springs are added at the joints to reduce the overall actuation requirements and to enhance the task performance. Examples from the kinematic and the kinetostatic synthesis of planar SDCSC mechanisms are presented to highlight the benefits.

1.
Krovi
,
V.
,
Kumar
,
V.
,
Ananthasuresh
,
G. K.
, and
Vezien
,
J.-M.
,
1999
, “
Design and Virtual Prototyping of Rehabilitation Aids
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
456
458
.
2.
Nie, X., and Krovi, V., 2001, “
Design of Passive Reconfigurable Manipulation Assistive Aids,” Proceedings of the 2001 ASME Design Engineering Technical Conferences, Paper No. DETC2001/DAC-21087, Pittsburgh, PA.
3.
Scardina, M. T., Soper, R. R., Calkins, J. M., and Reinholtz, C., 1995, “Optimal Synthesis of Force Generating Planar Four-link Mechanisms,” Proceedings of the 4th National Applied Mechanisms and Robotics Conference, Paper No. AMR 95-003, Cincinnati, OH.
4.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
A Loop Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
, No.
1
, pp.
121
126
.
5.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1994
, “
A Model Approach to Hyper-redundant Manipulator Kinematics
,”
IEEE Trans. Rob. Autom.
,
10
, No.
3
, pp.
343
354
.
6.
Hunt, K., 1978, Kinematic Geometry of Mechanisms, Clarendon Press, Oxford.
7.
Freudenstein
,
F.
, and
Primrose
,
E.
,
1963
, “
Geared Five-bar Motion, Part 1—Gear Ratio Minus 1
,”
ASME J. Appl. Mech.
,
85
, No.
E
, pp.
161
169
.
8.
Sandor
,
G. N.
,
1964
, “
On the Existence of a Cycloidal Burmester Theory in Planar Kinematics
,”
ASME J. Appl. Mech.
,
86
, No.
E
, pp.
694
699
.
9.
Kaufman
,
R. E.
, and
Sandor
,
G. N.
,
1969
, “
Bicycloidal Crank—A New Four-link Mechanism
,”
ASME J. Eng. Ind.
,
91
, No.
B
, pp.
91
96
.
10.
Tsai
,
L.-W.
,
1995
, “
Design of Tendon-driven Manipulators
,”
ASME J. Mech. Des.
,
117
, No.
2B
, pp.
80
86
.
11.
Hirose
,
S.
, and
Umetani
,
Y.
,
1978
, “
The Development of the Soft Gripper for the Versatile Robot Hand
,”
Mech. Mach. Theory
,
13
, pp.
351
359
.
12.
Ma
,
S.
,
Hirose
,
S.
, and
Yoshinada
,
H.
,
1993
, “
Design and Experiments for a Coupled Tendon-Driven Manipulator
,”
IEEE Trans. Control Syst. Technol.
,
13
, No.
1
, pp.
30
36
.
13.
Rosheim
,
M.
,
1997
, “
In the Footsteps of Leonardo
,”
IEEE Rob. Autom. Mag.
,
4
, No.
2
, pp.
12
14
.
14.
Leaver
,
S.
,
McCarthy
,
J. M.
, and
Bobrow
,
J.
,
1988
, “
The Design and Control of a Robot Finger for Tactile Sensing
,”
J. Rob. Syst.
,
5
, No.
6
, pp.
567
581
.
15.
Figliolini, G., and Ceccarelli, M., 1998, “A Motion Analysis for One-d.o.f. Anthropomorphic Finger Mechanism,” Proceedings of the 1998 ASME Design Engineering Technical Conferences, Paper No. DETC98/MECH-5985, (Atlanta, GA).
16.
Sandor G. N., and Erdman, A. G., 1984, Advanced Mechanism Design: Analysis and Synthesis, 2, Prentice Hall International, Englewood Cliffs, NJ.
17.
Bagci
,
C.
, 1987, “Synthesis of Linkages to Generate Specified Histories of Forces and Torques: Part 1—The Planar Four-bar Mechanism,d” Advances in Design Automation, 13th ASME Design Automation Conference (S. Rao, ed.), DE-Vol.10-2, pp. 227–236.
18.
Matthew
,
G. K.
, and
Tesar
,
D.
,
1977
, “
Synthesis of Spring Parameters to Balance General Forcing Functions in Planar Mechanisms
,”
ASME J. Eng. Ind.
,
99
, pp.
347
352
.
19.
Idlani
,
S.
,
Streit
,
D. A.
, and
Gilmore
,
B. J.
,
1993
, “
Elastic Potential Synthesis—A Generalized Procedure for Dynamic Synthesis of Machine and Mechanism Systems
,”
ASME J. Mech. Des.
,
115
, No.
3
, pp.
568
575
.
20.
Huang
,
C.
, and
Roth
,
B.
,
1993
, “
Dimensional Synthesis of Closed-loop Linkages to Match Force and Position Specifications
,”
ASME J. Mech. Des.
,
115
, No.
2
, pp.
194
198
.
21.
Sarkisyan
,
Y. L.
,
Gupta
,
K. C.
, and
Roth
,
B.
,
1973
, “
Kinematic Geometry Associated with the Least Square Approximation of a Given Motion
,”
ASME J. Eng. Ind.
,
95
, pp.
503
510
.
22.
Kramer, S. N., Selective Precision Synthesis of Planar Mechanisms Satisfying Practical Design Requirements, Ph.D. thesis, Rennsalear Polytechnic Institute, Troy, NY.
23.
Tsai
,
L.-W.
, and
Roth
,
B.
,
1973
, “
Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis
,”
ASME J. Eng. Ind.
,
95
, pp.
603
611
.
24.
Chuang
,
J. C.
, and
Waldron
,
K. J.
,
1983
, “
Synthesis with Mixed Motion and Path Generation Position Specifications
,”
ASME J. Mech., Transm., Autom. Des.
,
105
, No.
4
, pp.
617
624
.
25.
Akhras
,
R.
, and
Angeles
,
J.
,
1990
, “
Unconstrained Nonlinear Least-squares Optimization of Planar Linkages for Rigid-body Guidance
,”
Mech. Mach. Theory
,
25
, pp.
97
118
.
26.
Krovi, V., 1998, Design and Virtual Prototyping of User-Customized Assistive Devices, Ph.D. thesis, Mechanical Engineering and Applied Mechanics, University of Pennsylvania.
You do not currently have access to this content.