The coupled translation-rotation vibratory response of hypoid geared rotor system due to loaded transmission error excitation is studied by employing a generalized 3-dimensional dynamic model. The formulation includes the effects of backlash nonlinearity as well as time-dependent mesh position and line-of-action vectors. Its mesh coupling is derived from a quasi-static, 3-dimensional, loaded tooth contact analysis model that accounts for the precise gear geometry and profile modifications. The numerical simulations show significant tooth separation and occurrence of multi-jump phenomenon in the predicted response spectra under certain lightly loaded operating conditions. Also, resonant modes contributing to the response spectra are identified, and cases with super-harmonics are illustrated. The computational results are then analyzed to quantify the extent of non-linear and time-varying factors.

1.
Litvin
,
F. L.
, and
Gutman
,
Y.
,
1981
, “
Method of Synthesis and Analysis for Hypoid Gear-drives of Format and Helixform
,”
ASME J. Mech. Des.
,
103
, pp.
83
113
.
2.
Litvin, F. L., and Zhang, Y., 1991, “Local Synthesis and Tooth Contact Analysis of Face-milled Spiral Bevel Gear,” NASA Technical Report 4342 (AVSCOM 90-C-028).
3.
Litvin
,
F. L.
,
Wang
,
A. G.
, and
Handschuh
,
R. F.
,
1998
, “
Computerized Generation and Simulation of Meshing and Contact of Spiral Bevel Gears with Improved Geometry
,”
Comput. Methods Appl. Mech. Eng.
,
158
, pp.
35
64
.
4.
Gosselin, C., Cloutier, L., and Sankar, S., 1989, “Effects of the Machine Settings on the Transmission Error of Spiral Bevel Gears Cut by the Gleason Method,” Proc. International Power Transmission and Gearing Conference: New Technologies for Power Transmissions of the 90’s, Chicago, Illinois, pp. 705–712.
5.
Fong
,
Z. H.
, and
Tsay
,
C. B.
,
1992
, “
Kinematical Optimization of Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
114
, pp.
498
506
.
6.
Kubo
,
A.
,
Tarutani
,
I.
,
Gosselin
,
C.
,
Nonaka
,
T.
,
Aoyama
,
N.
, and
Wang
,
Z.
,
1997
, “
Computer Based Approach for Evaluation of Operating Performances of Bevel and Hypoid Gears
,”
JSME Int. J., Ser. III
,
40
, pp.
749
758
.
7.
Remmers, E. P., 1971, “Dynamics of Automotive Rear Axle Gear Noise,” SAE Paper 710114.
8.
Pitts, L. S., 1972, “Bevel and Hypoid Gear Noise Reduction,” SAE Paper 720734.
9.
Kiyono
,
S.
,
Fujii
,
Y.
, and
Suzuki
,
Y.
,
1981
, “
Analysis of Vibration of Bevel Gears
,”
Bull. JSME
,
24
, pp.
441
446
.
10.
Nakayashiki, A., 1983, “One Approach on the Axle Gear Noise Generated from the Torsional Vibration,” Proc. Japanese Society of Automotive Engineers, P-139, 2, Tokyo, Japan, pp. 571–580.
11.
Abe, E., and Hagiwara, H., 1990, “Advanced Method for Reduction in Axle Gear Noise,” Gear Design, Manufacturing and Inspection Manual, Society of Automotive Engineers, Warrendale, PA, pp. 223–236.
12.
O¨zgu¨ven
,
H. N.
, and
Houser
,
D. R.
,
1988
, “
Mathematical Models Used in Gear Dynamic-a Review
,”
J. Sound Vib.
,
121
(
3
), pp.
383
411
.
13.
O¨zgu¨ven
,
H. N.
, and
Houser
,
D. R.
,
1988
, “
Dynamic Analysis of High Speed Gears By Using Loaded Static Transmission Error
,”
J. Sound Vib.
,
125
, pp.
71
83
.
14.
Kahraman
,
A.
, and
Singh
,
R.
,
1990
, “
Non-linear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
,
142
(
1
), pp.
49
75
.
15.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Non-linear Dynamics of a Geared Rotor-Bearing System With Multiple Clearances
,”
J. Sound Vib.
,
144
(
3
), pp.
469
505
.
16.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Interactions Between Time-varying Mesh Stiffness and Clearance Non-linearities in a Geared System
,”
J. Sound Vib.
,
146
(
1
), pp.
135
156
.
17.
Blankenship
,
G. W.
, and
Kahraman
,
A.
,
1996
, “
Torsional Gear Pair Dynamics, Part-I: Characterization of Forced Response
,”
Proc. International Power Transmission and Gearing Conference
,
ASME
,
San Diego, CA
DE-88
, pp.
373
380
.
18.
Blankenship
,
G. W.
, and
Singh
,
R.
,
1995
, “
Dynamic Force Transmissibility in Helical Gear Pairs
,”
Mech. Mach. Theory
,
30
, pp.
323
339
.
19.
Velex
,
P.
, and
Maatar
,
M.
,
1996
, “
A Mathematical Model For Analyzing The Influence of Shape Deviations and Mounting Errors on Gear Dynamic Behavior
,”
J. Sound Vib.
,
191
(
5
), pp.
629
660
.
20.
Donley
,
M. G.
,
Lim
,
T. C.
, and
Steyer
,
G. C.
,
1992
, “
Dynamic Analysis of Automotive Gearing Systems
,”
Journal of Passenger Cars
,
101
(
6
), pp.
77
87
.
21.
Cheng, Y., and Lim, T. C., 1998, “Dynamic Analysis of High Speed Hypoid Gears With Emphasis on Automotive Axle Noise Problem,” Proc. 7th International Power Transmission and Gearing Conference, ASME, Atlanta, Georgia, DETC98/PTG-5784.
22.
Cheng, Y., and Lim, T. C., 2000, “Hypoid Gear Transmission with Non-linear Time-varying Mesh,” Proc. 8th International Power Transmission and Gearing Conference, ASME, Baltimore, Maryland, DETC2000/PTG-14432.
23.
Cheng
,
Y.
, and
Lim
,
T. C.
,
2001
, “
Vibration Analysis of Hypoid Transmissions Applying an Exact Geometry-based Gear Mesh Theory
,”
J. Sound Vib.
,
240
(
3
), pp.
519
543
.
24.
Hochmann, D., 1997, “Friction Force Excitation in Spur and Helical Involute Parallel Axis Gearing,” Ph.D. thesis, The Ohio State University, Columbus, Ohio.
25.
Lida
,
H.
,
Tamura
,
A.
, and
Yamada
,
Y.
,
1985
, “
Vibrational Characteristics of Friction Between Gear Teeth
,”
Bull. JSME
,
28
(
241
), pp.
1512
1519
.
26.
Handschuh
,
R. F.
, and
Kicher
,
T. P.
,
1996
, “
A Method for Thermal Analysis of Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
118
, pp.
580
585
.
27.
Gosselin
,
C.
,
Cloutier
,
L.
, and
Nguyen
,
Q. D.
,
1995
, “
A General Formulation For the Calculation of the Load Sharing and Transmission Error Under Load of Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
30
, pp.
433
450
.
28.
Tavakoli
,
M. S.
, and
Houser
,
D. R.
,
1986
, “
Optimum Profile Modifications for the Minimization of Static Transmission Errors of Spur Gears
,”
ASME J. Mech. Des.
,
108
, pp.
86
94
.
29.
Krenzer, T. J., 1981, “Tooth Contact Analysis of Spiral Bevel and Hypoid Gears Under Load,” SAE Paper 810688.
30.
Vijayakar, S., 1987, “Finite Element Methods for Quasi-prismatic Bodies With Application To Gears,” Ph.D thesis, The Ohio State University, Columbus, Ohio.
31.
Vijayakar
,
S.
,
1991
, “
A Combined Surface Integral and Finite Element Solution for a Three-Dimensional Contact Problem
,”
Int. J. Numer. Methods Eng.
,
31
, pp.
525
545
.
32.
Lim
,
T. C.
, and
Singh
,
R.
,
1990
, “
Vibration Transmission Through Rolling Element Bearings. Part I: Bearing Stiffness Formulation
,”
J. Sound Vib.
,
139
(
2
), pp.
179
199
.
33.
Lim
,
T. C.
, and
Cheng
,
Y.
,
1999
, “
A Theoretical Study of the Effect of Pinion Offset on the Dynamics of Hypoid Geared Rotor System
,”
ASME J. Mech. Des.
,
121
, pp.
594
601
.
You do not currently have access to this content.