Abstract

This paper presents a method for synthesizing multicomponent beam structural assemblies with maximum structural performance and manufacturability. The problem is posed as a relaxation of decomposition-based assembly synthesis, where both topology and decomposition of a structure are regarded as variables over a ground structure with nonoverlapping beams. A multiobjective genetic algorithm with graph-based crossover, coupled with FEM analyses, is used to obtain Pareto optimal solutions to this problem, exhibiting trade-offs among structural stiffness, total weight, component manufacturability (size and simplicity), and the number of joints. Case studies with a cantilever and a simplified automotive floor frame are presented, and representative designs in the Pareto front are examined for the trade-offs among the multiple criteria.

References

1.
Yetis
,
A.
, and
Saitou
,
K.
,
2002
, “
Decomposition-Based Assembly Synthesis Based on Structural Considerations,” ASME
J. Mech. Des.
,
124
, pp.
593
601
.
2.
Cetin, O. L., and Saitou, K., 2001, “Decomposition-Based Assembly Synthesis for Maximum Structural Strength and Modularity,” Proc. 2001 ASME Design Engineering Technical Conferences, Pittsburgh, Pennsylvania, September 9–12, DETC2001/DAC-21121. An extended version accepted to ASME Journal of Mechanical Design.
3.
Lyu
,
N.
, and
Saitou
,
K.
,
2003
, “
Decomposition-Based Assembly Synthesis for Structural Stiffness,” ASME
J. Mech. Des.
,
125
, pp.
452
463
.
4.
Lotter, B., 1989, Manufacturing Assembly Handbook, Butterworths, London.
5.
Deb., K., Agrawal, S., Pratab, A., and Meyarivan, T., 2000, “A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II,” KanGAL Report 200001, Indian Institute of Technology, Kanpur, India.
6.
Coello, C. A., Veldhuizen, D. A., and Lamont, G. B., 2002, Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer Academic/Plenum Publishers, New York.
7.
Saab, Y., and Rao, V., 1990, “Stochastic Evolution: A Fast Effective Heuristic for Some Genetic Layout Problems,” 27th ACM/IEEE Design Automation Conference, ACM/IEEE, New York, pp. 26–31.
8.
Laszewski, G., 1991, “Intelligent Structural Operators for the K-Way Graph Partitioning Problem,” Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, pp. 45–52.
9.
Pereira, F., Machado, P., Costa, E., and Cardoso, A., 1999, “Graph Based Crossover—A Case Study With the Busy Beaver Problem,” Proc. 1999 Genetic and Evolutionary Computation Conference, Morgan Kaufmann, San Francisco, pp. 1149–1155.
10.
Howell, L.L., 2001, Compliant Mechanisms, John Wiley & Sons, New York, p. 312.
11.
Dorn
,
W. C.
,
Gomory
,
R. E.
, and
Greenberg
,
H. J.
,
1964
, “
Automatic Design of Optimal Structures
,”
J. Mec.
,
3
, pp.
25
52
.
12.
Rozvany, G. I., 1976, Optimal Design of Flexural Systems, Pergamon, London.
13.
Rozvany, G. I., 1992, Shape and Lay-Out Optimization in Structural Design, CISM Lecture Notes No. 325, Springer, Vienna.
14.
Fleury, C., 1993, Discrete Valued Optimal Design Problems, Bendsøe, M. P., and Mota Soares, C. A. (eds.), Topology Optimization of Structure, pp. 81–96, Kluwer, Dordrecht.
15.
Hajela, P., Lee, E., and Lin, C. Y., 1993, Genetic Algorithms in Structural Topology Optimization, Bendsøe, M. P., and Mota Soares, C. A. (eds.), Topology Optimization of Structure, pp. 117–134, Kluwer, Dordrecht.
16.
Beckers
,
M.
,
1999
, “
Topology Optimization Using a Dual Method With Discrete Variables
,”
Struct. Optim.
,
17
, pp.
14
24
.
17.
Kirsch
,
U.
,
1989
, “
Optimal Topologies of Structures
,”
Appl. Mater. Res.
,
42
, pp.
223
249
.
18.
Bendsøe
,
M. P.
,
1994
, “
Optimization Methods for Truss Geometry and Topology Design
,”
Struct. Optim.
,
7
, pp.
141
159
.
19.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
, pp.
197
224
.
20.
Diaz
,
A. R.
, and
Bendsøe
,
M. P.
,
1992
, “
Shape Optimization of Structures for Multiple Loading Conditions Using a Homogenization Method
,”
Struct. Optim.
,
4
, pp.
17
22
.
21.
Ananthasuresh, G. K., Kota, S., and Kikuchi, N., 1994, “Strategies for Systematic Synthesis of Compliant MEMS,” DSC-Vol. 55-2, 1994 ASME Winter Annual Meeting, pp. 677–686.
22.
Jiang
,
T.
, and
Papalambros
,
P. Y.
,
1996
, “
Optimal Structural Topology Design Using Homogenization Method With Multiple Constraints
,”
Eng. Optimiz.
,
27
, pp.
87
108
.
23.
Rodrigues
,
H.
,
Guedes
,
J. M.
, and
Bendsøe
,
M. P.
,
2002
, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidisciplinary Optim.
,
24
, pp.
1
10
.
24.
Chickermane
,
H.
, and
Gea
,
H. C.
,
1997
, “
Design of Multi-Component Structural System for Optimal Layout Topology and Joint Locations
,”
Eng. Comput.
,
13
, pp.
235
243
.
25.
Johanson, R., Kikuchi, N., and Papalambros, P., 1994, “Simultaneous Topology and Material Microstructure Design,” Advances in Structural Optimization, B. H. V. Topping and M. Papadrakakis (ed.), Civil-Comp Ltd., Edinburgh, Scotland, pp. 143–149.
26.
Jiang
,
T.
, and
Chirehdast
,
M.
,
1997
, “
A Systems Approach to Structural Topology Optimization: Designing Optimal Connections
,”
J. Mech. Des.
,
119
, pp.
40
47
.
27.
Li
,
Q.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
,
2001
, “
Evolutionary Structural Optimization for Connection Topology Design of Multi-Component Systems
,”
Eng. Comput.
,
18
(
3/4
), pp.
460
479
.
28.
Boothroyd, G., and Dewhurst, P., 1983, Design for Assembly Handbook, University of Massachusetts, Amherst.
29.
Boothroyd, G., Dewhurst, P., and Knight, W., 1994, Product Design for Manufacturing and Assembly, Marcel Dekker, New York.
30.
Gupta
,
S. K.
,
Regli
,
W. C.
, and
Nau
,
D. S.
,
1994
, “
Integrating DFM With CAD Through Design Critiquing
,”
Concurrent Eng. Res. Appl.
,
2
, pp.
85
95
.
31.
De Fanzio
,
T.
, and
Whitney
,
D.
,
1987
, “
Simplified Generation of All Mechanical Assembly Sequences
,”
IEEE Trans. Rob. Autom.
,
3
(
6
), pp.
640
658
.
32.
Ko
,
H.
, and
Lee
,
K.
,
1987
, “
Automatic Assembling Procedure Generation From Mating Conditions
,”
Comput.-Aided Des.
,
19
, pp.
3
10
.
33.
Wang, C. H., and Bourne, D., 1997, “Concurrent Decomposition for Sheet-Metal Product,” Proc. of 1997 ASME Design Technical Conference, Sacramento, CA, September, 1997.
34.
Yetis
,
A.
, and
Saitou
,
K.
,
2000
, “
Decomposition-Based Assembly Synthesis Based on Structural Considerations,” ASME
J. Mech. Des.
,
124
, pp.
593
601
.
35.
Cetin, O., and Saitou, K., 2003, “Decomposition-Based Assembly Synthesis of Multiple Structures for Minimum Production Cost,” Proc. 2003 ASME International Mechanical Engineering Congress and R&D Exposition, Washington, D.C., Nov 15–21, IMECE2003-43085.
36.
Bendsøe, M. P., and Sigmund, O., 2003, Topology Optimization: Theory, Methods and Applications, Springer, Berlin.
37.
Garey, M. R., and Johnson, D. S., 1979, Computers and Intractability, a Guide to the Theory of NP-Completeness, Freeman, New York.
38.
Goldberg, D., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Massachusetts.
39.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connection With Graph
,”
Numer. Math.
,
1
, pp.
269
271
.
You do not currently have access to this content.