Abstract

The current practice in problem decomposition assumes that (i) design problems can be rationally decomposed a priori and (ii) decomposition can usefully result in complexity reduction a priori. However, these assumptions are not always true in reality. In response to this concern, this paper introduces the notions of decomposability and complexity to problem decomposition. In particular, a full scale of decomposability analysis and complexity analysis in the context of decomposition are presented along with approaches and algorithms. These new analyses not only address the viability and validity of decomposition, but also help achieve an optimal number of subproblems during decomposition, which is usually determined by trial and error or a priori. Furthermore, a procedure able to combine these new analyses into our two-phase decomposition framework is described. This effort leads to an enhanced decomposition method able to find the most appropriate decomposition solution to a complex design problem.

References

1.
Chen
,
L.
,
Ding
,
Z.
, and
Li
,
S.
, 2003, “
A Formal Two-Phase Method for Decomposition of Complex Design Problems
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
184
195
.
2.
Kusiak
,
A.
, and
Larson
,
N.
, 1995, “
Decomposition and Representation Methods in Mechanical Design
,” ASME Special 50th Anniversary Design Issue,
ASME J. Mech. Des.
1050-0472,
117
, pp.
17
24
.
3.
Baldwin
,
C. Y.
, and
Clark
,
K. B.
, 2000,
Design Rules: The Power of Modularity
,
MIT Press
, Cambridge, MA.
4.
Browning
,
T. R.
, 2001, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
0018-9391
48
(
3
), pp.
292
306
.
5.
Kusiak
,
A.
, and
Cheng
,
C. H.
, 1990, “
A Branch-and-Bound Algorithm for Solving Group Technology Problems
,”
Ann. Operat. Res.
0254-5330
26
, pp
415
431
.
6.
Kusiak
,
A.
, and
Wang
,
J.
, 1993, “
Decomposition of Design Process
,”
J. Mech. Des.
1050-0472
115
, pp.
687
695
.
7.
Michelena
,
N.
, and
Papalambros
,
P. Y.
, 1995, “
Optimal Model-Based Decomposition of Powertrain System Design
,”
ASME J. Mech. Des.
1050-0472
117
(
4
), pp.
499
505
.
8.
Krishnamachari
,
R. S.
, 1996, “
A Decomposition Synthesis Methodology for Optimal Systems Design
,” Ph.D. thesis, Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI.
9.
Chen
,
L.
,
Ding
,
Z.
, and
Li
,
S.
, 2004, “
Tree-based Dependency Analysis in Decomposition and Re-decomposition of Complex Design Problems
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
12
23
.
10.
Simon
,
H. A.
, and
Ando
,
A
, 1961, “
Aggregation of Variables in Dynamic Systems
,”
Econometrica
0012-9682
29
, pp.
111
138
Reprinted in
Ando
,
A.
,
Fisher
,
F. M.
, and
Simon
,
H. A.
, 1963,
Essays on the Structure of Social Science Models
,
MIT Press
, Cambridge, pp.
61
91
.
11.
Courtois
,
P. J.
, 1977,
Decomposability: Queuing and Computer System Applications
,
Academic Press
, London.
12.
Simon
,
H. A.
, 1981,
The Sciences of the Artificial
,
MIT Press
, Cambridge, MA.
13.
Alexander
,
C.
, 1964,
Notes on the Synthesis of Form
,
Harvard University Press
, Cambridge, MA.
14.
Ambler
,
S. W.
, 1998,
Process Patterns: Building Large-Scale Systems Using Object Technology
,
Cambridge University Press
, Cambridge, UK.
15.
Larman
,
C.
, 2002,
Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified Process
,
Prentice Hall
, New Jersey.
16.
Dennis
,
A.
,
Wixom
,
B. H.
, and
Tegarden
,
D.
, 2002,
Systems Analysis and Design: An Object-Oriented Approach with UML
,
Wiley
, New York.
17.
Chidamber
,
S. R.
, and
Kemerer
C. F.
, 1994, “
A Metrics Suite for Object Oriented Design
,”
IEEE Trans. Software Eng.
0098-5589
20
(
6
), pp.
476
493
.
18.
Briand
,
L.
, and
Wüst
,
J.
, 2002, “
Empirical Studies of Quality Models in Object-Oriented Systems
,”
Adv. Comput.
59
, pp.
97
166
.
19.
Suh
,
N. P.
, 1990,
The Principle of Design
,
Oxford University Press
, New York.
20.
Rinderle
,
J. R.
, and
Suh
,
N. P.
, 1982, “
Measures of Functional Coupling in Design
,”
ASME J. Eng. Ind.
0022-0817
104
, pp.
383
388
.
21.
Arcidiacono
,
G.
,
Campatelli
,
G.
, and
Lipson
,
H.
, 2001, “
A Measure For Design Coupling
,”
Proc. of International Conference on Engineering Design
, Glasgow, Aug.
21
-
23
,
Bury St. Edmuds: Professional Engineering Publisher for the Institution of Mechanical Engineers
.
22.
Jaccard
,
P.
, 1908, “
Nouvelles recherches sur la distribution florale
,”
Bull. Soc. Vaud. Sci. Nat.
,
44
, pp.
223
-
270
.
23.
Everitt
B. S.
, 1993,
Cluster Analysis
, 3rd ed.,
Wiley
, New York.
24.
Kaufman
,
L.
, and
Rousseeuw
,
P. J.
, 1990,
Finding Groups in Data: An Introduction to Cluster Analysis
,
Wiley
, New York.
25.
Romesburg
,
H. C.
, 1990,
Cluster Analysis for Researchers
,
Krieger
, Malabar.
26.
Dubois
,
D.
, and
Prade
,
H. M.
, 1988,
Possibility Theory
,
Plenum Press
, New York.
27.
Summers
,
J. D.
, and
Shah
,
J. J.
, 2003, “
Developing Measures of Complexity for Engineering Design
,”
CD-ROM Proceedings of ASME Design Engineering Technical Conferences
, DETC2003/DTM-48633, Chicago, Illinois, Sept.
2
-
6
.
28.
Shannon
,
C. E.
, 1948, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
0005-8580
27
, pp.
379
623
.
29.
Alexandrov
,
N. M.
and
Lewis
,
R. M.
, 2002, “
Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design
,”
AIAA J.
0001-1452
40
(
2
), pp.
301
309
.
You do not currently have access to this content.