Design of processes and devices under uncertainty calls for stochastic analysis of the effects of uncertain input parameters on the system performance and process outcomes. The stochastic analysis is often carried out based on sampling from the uncertain input parameters space, and using a physical model of the system to generate distributions of the outcomes. In many engineering applications, a large number of samples—on the order of thousands or more—is needed for an accurate convergence of the output distributions, which renders a stochastic analysis computationally intensive. Toward addressing the computational challenge, this article presents a methodology of S̱tochastic A̱nalysis with M̱inimal S̱ampling (SAMS). The SAMS approach is based on approximating an output distribution by an analytical function, whose parameters are estimated using a few samples, constituting an orthogonal Taguchi array, from the input distributions. The analytical output distributions are, in turn, used to extract the reliability and robustness measures of the system. The methodology is applied to stochastic analysis of a composite materials manufacturing process under uncertainty, and the results are shown to compare closely to those from a Latin hypercube sampling method. The SAMS technique is also demonstrated to yield computational savings of up to 90% relative to the sampling-based method.

1.
Basar
,
T.
, and
Wu
,
Y. W.
, 1986, “
Solution to a Class of Minimax Decision Problem Arising in Communication Systems
,”
J. Optim. Theory Appl.
0022-3239,
51
, pp.
375
404
.
2.
Rustem
,
B.
, 1992, “
A Constrained Min-Max Algorithm for Rival Models of the Same Economic System
,”
Math. Program.
0025-5610,
53
, pp.
647
654
.
3.
Rustem
,
B.
, and
Nguyen
,
Q.
, 1998, “
An Algorithm for the Inequality Constrained Discrete Min-Max Problem
,”
SIAM J. Optim.
1052-6234,
8
, pp.
265
283
.
4.
Rao
,
S. S.
, and
Cao
,
L.
, 2002, “
Optimum Design of Mechanical Systems Involving Interval Parameters
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
465
472
.
5.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
, 2000,
Sensitivity Analysis
,
Wiley
, New York.
6.
Ma
,
C.-M.
,
Pawlicki
,
T.
,
Jiang
,
S. B.
,
Li
,
J. S.
,
Deng
,
J.
,
Mok
,
E.
,
Kapur
,
A.
,
Xing
,
L.
,
Ma
,
L.
, and
Boyer
,
A. L.
, 2000, “
Monte Carlo Verification of IMRT Dose Distributions from a Commercial Treatment Planning Optimization System
,”
Phys. Med. Biol.
0031-9155,
45
, pp.
2483
2495
.
7.
Bressanini
,
D.
, and
Morosi
,
G.
, 2002, “
Robust Wave Function Optimization Procedures in Quantum Monte Carlo Methods
,”
J. Chem. Phys.
0021-9606,
116
, pp.
5345
5350
.
8.
Chen
,
W.
, and
Du
,
X.
, 2000, “
Toward a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
385
394
.
9.
Mawardi
,
A.
, and
Pitchumani
,
R.
, 2003, “
Cure Cycle Design for Thermosetting-Matrix Composites Fabrication under Uncertainty
,”
Ann. Operat. Res.
0254-5330,
132
, pp.
19
45
.
10.
Iman
,
R. L.
, and
Shortencarier
,
M. J.
, 1984, “
A FORTRAN77 Program and User’s Guide for Generation of Latin Hypercube and Random Samples for Use with Computer Models
,” Technical Report, NUREG/CR-3624, SAND83-2365,
Sandia National Laboratories
, Albuquerque, NM.
11.
Kalagnanam
,
J.
, and
Diwekar
,
U.
, 1997, “
An Efficient Sampling Technique for Off-Line Quality Control
,”
Technometrics
0040-1706,
39
, pp.
308
319
.
12.
Padmanabhan
,
S. K.
, and
Pitchumani
,
R.
, 1999, “
Stochastic Analysis of Isothermal Cure of Resin Systems
,”
Polym. Compos.
0272-8397,
20
, pp.
72
85
.
13.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
, pp.
409
435
.
14.
Darlington
,
J.
,
Pantelides
,
C. C.
,
Rustem
,
B.
, and
Tanyi
,
B. A.
, 2000, “
Decreasing the Sensitivity of Open-Loop Optimal Solutions in Decision Making under Uncertainty
,”
Eur. J. Oper. Res.
0377-2217,
121
, pp.
343
362
.
15.
Ratnaparkhi
,
M. V.
, and
Park
,
W. J.
, 1986, “
Lognormal Distribution-Model for Fatigue Life and Residual Strength of Composite Materials
,”
IEEE Trans. Reliab.
0018-9529,
R-35
, pp.
312
315
.
16.
Hill
,
R.
,
Brooks
,
R.
, and
Kaloedes
,
D.
, 1999, “
Transverse Cracking of Fibre Bundle Composites Studied by Acoustic Emission and Weibull Statistics—Effects of Postcuring and Surface Treatment
,”
J. Mater. Sci.
0022-2461,
34
, pp.
5215
5236
.
17.
Mahesh
,
S.
,
Bayerlien
,
I. J.
, and
Phoenix
,
S. L.
, 1999, “
Size and Heterogeneity Effects on the Strength of Fibrous Composites
,”
Physica D
0167-2789,
133
, pp.
371
389
.
18.
Alqam
,
M.
,
Bennet
,
R. M.
, and
Zureick
,
A.-H.
, 2002, “
Three-Parameter vs. Two-Parameter Weibull Distribution for Pultruded Composite Material Properties
,”
Compos. Struct.
0263-8223,
58
, pp.
497
503
.
19.
Phadke
,
M. S.
, 1989,
Quality Engineering Using Robust Design
,
Prentice-Hall
, Englewood Cliffs, NJ.
20.
Antille
,
G.
, and
Weinberg
,
A.
, 2000, “
A Study of D-optimal Designs Efficiency for Polynomial Regression
,” Technical Report No 2000.04,
Department of Econometrics, University of Geneva
, Switzerland.
21.
Matheron
,
G.
, 1963, “
Principles of Geostatistics
,”
Econ. Geol.
0361-0128,
27
, pp.
968
1005
.
22.
Han
,
C. D.
,
Lee
,
D. S.
, and
Chin
,
H. B.
, 1986, “
Development of a Mathematical Model for the Pultrusion Process
,”
Polym. Eng. Sci.
0032-3888,
26
, pp.
393
404
.
23.
Nelder
,
J. A.
, and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
0010-4620,
7
, pp.
308
313
.
24.
Ostrovsky
,
G.
,
Achenie
,
L. E. K.
,
Wang
,
Y.
, and
Volin
,
Y.
, 2002, “
A Unique Approach for Solving Sub-Problems in Flexibility Analysis
,”
Chem. Eng. Commun.
0098-6445,
189
(
1
), pp.
125
149
.
You do not currently have access to this content.