An extension of decomposition-based assembly synthesis for structural modularity is presented where the early identification of shareable components within multiple structures is posed as an outcome of the minimization of estimated manufacturing costs. The manufacturing costs of components are estimated under given production volumes considering the economies of scale. Multiple structures are simultaneously decomposed, and the types of welded joints at component interfaces are selected from a given library, in order to minimize the overall manufacturing cost and the reduction of structural strength due to the introduction of joints. A multiobjective genetic algorithm is used to allow effective examination of trade-offs between manufacturing cost and structural strength. A new joint-oriented representation of structures combined with a “direct” crossover is introduced to enhance the efficiency of the search. A preliminary case study with two simplified aluminum space frame automotive bodies is presented to demonstrate that not all types of component sharing are economically justifiable under a certain production scenario.

1.
Gupta
,
S.
,
Das
,
D.
,
Regli
,
W. C.
, and
Nau
,
D. S.
, 1997, “
Automated Manufacturability: A Survey
,”
Res. Eng. Des.
0934-9839
9
(
3
), pp.
168
190
.
2.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W.
, 1994,
Product Design for Manufacture and Assembly
,
Marcel Dekker
, New York.
3.
LeBacq
,
C.
,
Brechet
,
Y.
,
Shercliff
,
H. R.
,
Jeggy
,
T.
, and
Salvo
,
L.
, 2002, “
Selection of Joining Methods in Mechanical Design
,”
Mater. Des.
0264-1275
23
, pp.
405
416
.
4.
Yetis
,
F. A.
, and
Saitou
,
K.
, 2000, “
Decomposition-Based Assembly Synthesis Based on Structural Considerations
,”
Proc. of 2000 ASME Design Engineering Technical Conferences
, Baltimore, Sept. 10–13,
ASME
, New York, ASME Paper No. DETC2000/DAC-1428.
5.
Yetis
,
F. A.
, and
Saitou
,
K.
, 2002, “
Decomposition-Based Assembly Synthesis Based on Structural Considerations
,”
J. Mech. Des.
1050-0472
124
(
4
), pp.
593
601
.
6.
Cetin
,
O. L.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Structural Modularity
,”
J. Mech. Des.
1050-0472
126
(
2
), pp.
234
243
.
7.
Cetin
,
O. L.
,
Saitou
,
K.
,
Nishigaki
,
H.
,
Nishiwaki
,
S.
,
Amago
,
T.
, and
Kikuchi
,
N.
, 2001, “
Modular Structural Component Design Using the First Order Analysis and Decomposition-Based Assembly Synthesis
,”
Proc. of 2001 ASME International Mechanical Engineering Congress and Exposition
, New York, Nov. 11–16,
ASME
, New York, ASME Paper No. IMECE2001/DE-23265.
8.
Cetin
,
O. L.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Maximum Structural Strength and Modularity
,”
J. Mech. Des.
1050-0472
126
(
2
), pp.
244
253
.
9.
Simpson
,
T. W.
, and
D’Souza
,
B.
, 2002, “
Assessing Variable Levels of Platform Commonality within a Product Family Using a Multiobjective Genetic Algorithm
,”
Proc. of 9th AIAA/ISSMO Symp. on Multidisciplinary Analysis and Optimization
,
Atlanta
, Sept. 4–6,
AIAA
, Washington, AIAA Paper No. AIAA2002-5427.
10.
Fujita
,
K.
, and
Yoshida
,
H.
, 2001, “
Product Variety Optimization: Simultaneous Optimization of Module Combination and Module Attributes
,”
Proc. of 2001 ASME Design Engineering Technical Conferences
,
Pittsburgh
, Sept. 9–12,
ASME
, New York, ASME Paper No. DETC2001/DAC-21058.
11.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Perez-Duarte
,
A.
, and
Papalambros
,
P. Y.
, 2002, “
Platform Selection under Performance Loss Constraints in Optimal Design of Product Families
,”
Proc. of 2002 ASME Design Engineering Technical Conferences, Montreal
, Sept. 29–Oct. 2,
ASME
,
New York
, ASME Paper No. DETC2002/DAC-34099.
12.
Simpson
,
T. W.
,
Maier
,
J. R. A.
, and
Mistree
,
F.
, 2001, “
Product Platform Design: Method and Application
,”
Res. Eng. Des.
0934-9839
13
, pp.
2
22
.
13.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
, 2002, “
Introduction of a Product Family Penalty Function Using Physical Programming
,”
J. Mech. Des.
1050-0472
124
(
2
), pp.
164
172
.
14.
Kim
,
K.
, and
Chhajed
,
D.
, 2000, “
Commonality in Product Design: Cost Saving, Valuation Change and Cannibalization
,”
Eur. J. Oper. Res.
0377-2217
125
, pp.
602
621
.
15.
Meyer
,
M. H.
,
Tertzakian
,
P.
, and
Utterback
,
J.
, 1997, “
Metrics for Managing Product Development Within a Product Family Context
,”
Manage. Sci.
0025-1909
43
(
1
), pp.
88
111
.
16.
Fisher
,
M.
,
Ramdas
,
K.
, and
Ulrich
,
K.
, 1999, “
Sharing in the Management of Product Variety: A Study of Automotive Braking Systems
,”
Manage. Sci.
0025-1909
45
(
3
), pp.
297
315
.
17.
Kelkar
,
A.
,
Roth
,
R.
, and
Clark
,
J.
, 2001, “
Automobile Bodies: Can Aluminum Be an Economical Alternative to Steel?
,”
J. Minerals Metals Mater. Soc.
53
(
8
), pp.
28
32
.
18.
Constantine
,
B.
, 2001, “
Economics of Tubular Hydroforming
,”
Materials Systems Lab.
,
Massachusetts Institute of Technology
, Cambridge, MA, http://msl1.mit.edu/msl/meeting̱04192001/prẕpdf/constantine.pdfhttp://msl1.mit.edu/msl/meeting̱04192001/prẕpdf/constantine.pdf
19.
Clark
,
J.
, 1998, “
Future of Automotive Body Materials: Steel, Aluminum and Polymer Composites
,”
Massachusetts Institute of Technology
, Cambridge, MA, http://msl1.mit.edu/hoog. pdfhttp://msl1.mit.edu/hoog. pdf
20.
Malen
,
D. E.
, 2002,
Course Notes from Fundamentals of Automotive Body Structures
,
Dollar Bill Copying
, Ann Arbor, MI.
21.
Cederqvist
,
L.
, and
Reynolds
,
A. P.
, 2001, “
Factors Affecting the Properties of Friction Stir Welded Aluminum Lap Joints
,”
Welding J. Res. Suppl.
80
(
12
), pp.
281
287
.
22.
Ye
,
N.
, and
Moan
,
T.
, 2002, “
Fatigue and Static Behavior of Aluminium Box-Stiffener Lap Joints
,”
Int. J. Fatigue
0142-1123
24
, pp.
581
589
.
23.
Matsumoto
,
T.
, and
Izuchi
,
S.
, 1995, “
Laser Welding of Aluminum Alloy Sheets
,”
Kobe Steel Eng. Rep.
45
, pp.
72
74
.
24.
Pinho da Cruz
,
J. A. M.
,
Costa
,
J. D. M.
,
Borrego
,
L. F. P.
, and
Ferreira
,
J. A. M.
, 2000, “
Fatigue Life Prediction in Almgsi1 Lap Joint Weldments
,”
Int. J. Fatigue
0142-1123
22
, pp.
601
610
.
25.
Behler
,
K.
,
Berkmanns
,
J.
,
Ehrhardt
,
A.
, and
Frohn
,
W.
, 1997, “
Laser Beam Welding of Low Weight Materials and Structures
,”
Mater. Des.
0264-1275
18
(
4–6
), pp.
261
267
.
26.
Matthes
,
K.-J.
,
Lubeck
,
K.-H.
, and
Lanzendorfer
,
G.
, 1998, “
Influence of Irregularities at Butt-Welded Seams on the Behaviour of the Vibration-Fatigue Strength of Sheet-Aluminium Joints
,”
Schweissen Schneiden
0036-7184
50
(
3
), pp.
E57
E60
.
27.
Ohta
,
A.
, and
Mawari
,
T.
, 1990, “
Fatigue Strength of Butt Welded Al-Mg Aluminium Alloy: Tests with Maximum Stress at Yield Strength
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X
13
(
2
), pp.
53
58
.
28.
Coello
,
C. A. C.
,
van Veldhuizen
,
D. A.
, and
Lamont
,
G. B.
, 2002,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Kluwer Academic/Plenum Publishers
, New York.
29.
Deb
,
K.
,
Agrawal
,
S.
,
Pratab
,
A.
, and
Meyarivan
,
T.
, 2000, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
Parallel Problem Solving from Nature—PPSN VI
,
M.
Schoehaur
,
K.
Deb
,
G.
Rudolph
,
X.
Yao
,
E.
Lutton
,
J. J.
Merelo
, and
H.-P.
Schwefel
, eds.,
Springer
,
New York
,
1917
, pp.
849
858
.
You do not currently have access to this content.