In this paper is described a procedure to synthesize the optimal topology, shape, and size of compliant continua for a given nonlinear output path. The path is prescribed using a finite number of distinct precision points much in accordance with the synthesis for path generation in traditional kinematics. Geometrically nonlinear analysis is employed to model large displacements of the constituent members. It is also essential to employ nonlinear analysis to allow the output port to negotiate the prescribed path accurately. The topology synthesis problem is addressed in its original binary form in that the corresponding design variables are only allowed to assume values of “0” for no material and “1” for the material present at a site in the design region. Shape and size design variables are modeled using continuous functions. Owing to the discrete nature of topology design variables, since gradient based optimization methods cannot be employed, a genetic algorithm is used that utilizes only the objective values to approach an optimum solution. A notable advantage of a genetic algorithm over its gradient based counterparts is the implicit circumvention of nonconvergence in the large displacement analysis, which is another reason why a genetic algorithm is chosen for optimization. The least squared objective is used to compare the design and desired output responses. To allow a user to specify preference for a precision point, individual multiple least squared objectives, same in number as the precision points are used. The multiple objectives are solved using Nondominated Sorting in Genetic Algorithm (NSGA-II) to yield a set of pareto optimal solutions. Thus, multiple solutions for compliant mechanisms can be obtained such that a mechanism can traverse one or some precision points among those specified more precisely. To traverse the entire path, a solution that minimizes the sum of individual least square objectives may be chosen. Synthesis examples are presented to demonstrate the usefulness of the proposed method that is capable of generating a solution that can be manufactured as is without requiring any interpretation.

1.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A loop-closure theory for the analysis and synthesis of compliant mechanisms
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
121
125
.
2.
Ananthasuresh
,
G. K.
, and
Kota
,
S.
, 1995, “
Designing Compliant Mechanisms
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
117
, pp.
93
96
.
3.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
, New York.
4.
Ananthasuresh
,
G. K.
,
Kota
,
S.
,
Kikuchi
,
N.
, 1994, “
Strategies for Systematic Synthesis of Compliant MEMS
,” in
Proceedings of the 1994 ASME Winter Annual Meeting
,
Chicago
, pp.
677
686
.
5.
Frecker
,
M.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
,
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
238
245
.
6.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
, pp.
495
526
.
7.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an optimality property of compliant topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
36
49
.
8.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
, pp.
535
559
.
9.
Saxena
,
A.
,
Ananthasuresh
,
G. K.
, 1998, “
An optimality criteria approach for the topology synthesis of compliant mechanisms
,”
Proceedings of DETC’98, ASME Design, Engineering Technical Conference
,
Atlanta
, GA, DETC98/MECH5937.
10.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001a, “
Topology Design of Compliant Mechanisms with Strength Considerations
,”
Mech. Struct. Mach.
0890-5452,
29
, pp.
199
221
.
11.
Larsen
,
V. D.
,
Sigmund
,
O.
,
Bouwstra
,
S.
, 1996, “
Design and fabrication of compliant mechanisms and structures with negative Poisson’s ratio
,”
IEEE, International Workshop on Micro Electro Mechanical Systems, MEMS-96
.
12.
Hetrick
,
J.
, and
Kota
,
S.
, 1998, “
Size and Shape Optimization of Compliant Mechanisms-DETC98/MECH-5943
,” in
Proceedings of the DETC’98 ASME Design Engineering and Technical Conference
, September 13–16,
Atlanta
, GA.
13.
Jonsmann
,
J.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1999, “
Multi degrees of freedom electro-thermal microactuators
,”
In Proceedings of TRANSDUCERS’99
, pp.
1372
1375
.
14.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2002, “
Novel Design Technique for Electro-Thermally Actuated Compliant Micromechanisms
,”
Sens. Actuators, A
0924-4247, A Physical,
97-98
, pp.
599
609
.
15.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
Topology synthesis of electro-thermal compliant mechanisms using line elements
,”
Struct. Multidiscip. Optim.
1615-147X,
26
, pp.
209
218
.
16.
Saxena
,
R.
, and
Saxena
,
A
, 2003, “
On Design of Electro-thermally Compliant MEMS for Strength
,”
ASME Design Engineering Technical Conference
, September 2–6,
Chicago
, IL, DETC2003/DAC-48807.
17.
Canfield
,
S.
, and
Frecker
,
M.
, 2000, “
Topology Optimization of Compliant Mechanical Amplifiers for Piezoelectric Actuators
,”
Struct. Multidiscip. Optim.
1615-147X,
20
, pp.
269
279
.
18.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 1998, “
Topology Optimization of Geometrically Nonlinear Structures and Compliant Mechanisms
,” in
Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, AIAA-98-4950, pp.
1874
1882
.
19.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001b, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Output Path
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
33
42
.
20.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2683
2706
.
21.
Sigmund
,
O.
, 2001a, “
Design of Multiphysics Actuators using Topology Optimization—Part I: One-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
6577
6604
.
22.
Sigmund
,
O.
, 2001b, “
Design of Multiphysics Actuators using Topology Optimization—Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
6605
6627
.
23.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2003, “
Topology optimization of contact-aided compliant mechanisms with smoothened contact modeling
,”
International Conference on Modeling, Simulation and Optimization for Design of Multi-disciplinary Engineering Systems 24–26 September
,
Goa
, India.
24.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms with Multiple Materials using a Peak function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
23
, pp.
49
62
.
25.
Bendsøe
,
M. P.
, 1995,
Optimization of Structural Topology, Shape and Material
,
Springer
, Berlin.
26.
Zhou
,
M.
,
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometrical, and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, pp.
309
336
.
27.
Borrvall
,
T.
, and
Petersson
,
J.
, 2001, “
Topology optimization using regularized intermediate density control
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4911
4928
.
28.
Sigmund
,
O.
,
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2002, “
Numerical methods for the topology optimization of structures that exhibit snap-through
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
1215
1237
.
29.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
, 1994, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
1005
1012
.
30.
Kane
,
C.
, and
Schoenauer
,
M.
, 1996, “
Topological Optimum Design using Genetic Algorithms
,”
Contr. Cybernet.
0324-8569,
25
, pp.
1059
1088
.
31.
Jakiela
,
M. J.
,
Chapman
,
C.
,
Duda
,
J.
,
Adewuya
,
A.
,
Saitou
,
K.
, 2000, “
Continuum Structural Topology Design with Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
186
, pp.
339
356
.
32.
Parson
,
R.
, and
Canfield
,
S. L.
, 2002, “
Developing genetic programming techniques for the design of compliant mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
78
86
.
33.
Tai
,
K.
,
Cui
,
G. Y.
,
Ray
,
T.
, 2002, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
492
500
.
34.
Lu
,
Ker-Jia
, and
Kota
,
S.
, 2003, “
Synthesis of Shape Morphing Compliant Mechanisms Using a Load Path Representation Method
,” in
Proceedings of the 2002 SPIE Modeling, Signal Processing, and Control Conference
,
San Diego
, CA, March 2–6, 2003.
35.
Saxena
,
A.
, 2002, “
On Multiple-Material Optimal Compliant Topologies: Discrete Variable Parameterization using Genetic Algorithm
,”
ASME Design Engineering Technical Conferences, Design Automation Conference
,
Montreal
, CA, Sept. 29–Oct. 2, 2002, Paper No. DETC2002/MECH-34209.
36.
Crisfield
,
M. A.
, 1991,
Nonlinear Finite Element Analysis of solids and Structures
,
Wiley
, Baffins Lane, Chichester, PO19 1UD, England, Vol.
1
.
37.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice–Hall
, Englewood Cliffs.
38.
Goldberg
,
D. E.
, 2002,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison–Wesley
, Reading.
39.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
,
Meyarivan
,
T.
, 2000, “
A Fast Elitist Non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
,” in
Proceedings of the Parallel Problem Solving from Nature VI Conference
, 16–20 September,
Paris
, France, pp.
849
858
.
40.
Saggere
,
L.
, and
Kota
,
S.
, 1999, “
Static Shape Control of Smart Structures Using Compliant Mechanisms
,”
AIAA J.
0001-1452,
37
, pp.
572
578
.
You do not currently have access to this content.