This article explores the effect that velocities have on a nonredundant robotic manipulator’s ability to accelerate its end-effector, as well as to apply forces/moments to the environment at the end-effector. This work considers velocity forces, including Coriolis forces, and the reduction of actuator torque with rotor velocity described by the speed-torque curve, at a particular configuration of a manipulator. The focus here is on nonredundant manipulators with as many actuators as degrees-of-freedom. Analysis of the velocity forces is accomplished using optimization techniques, where the optimization problem consists of an objective function and constraints which are all purely quadratic forms, yielding a nonconvex problem. Dialytic elimination is used to find the globally optimal solution to this problem. The proposed method does not use iterative numerical optimization methods. The PUMA 560 manipulator is used as an example to illustrate this methodology. The methodology provides an analytical analysis of the velocity forces which insures that the globally optimal solution to the associated optimization problem is found.

1.
Jones
,
J. L.
, and
Flynn
,
A. M.
, 1993,
Mobile Robots: Inspiration to Implementation
,
A. K. Peters
,
Wellesley, MA
, pp.
170
176
.
2.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
,
also appearing Robotics Research, The Second International Symposium.
3.
Lee
,
J.
, 2001, “
A Structured Algorithm for Minimum l∞-Norm Solutions and Its Application to a Robot Velocity Workspace Analysis
,”
Robotica
0263-5747,
19
, pp.
343
352
.
4.
Gosselin
,
C.
, 1990, “
Dexterity Indices for Planar and Spherical Robotic Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
, pp.
650
655
.
5.
Angeles
,
J.
, and
Lòpez-Cajùn, C.
S.
, 1992, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Robot. Res.
0278-3649,
11
(
6
), pp.
560
571
.
6.
Holte
,
J. E.
,
Chase
,
T. R.
, and
Erdman
,
A. G.
, 2001, “
Approximate Velocities in Mixed Exact-Approximate Position Synthesis of Planar Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
123
(
3
), pp.
388
394
.
7.
Bowling
,
A.
, and
Khatib
,
O.
, 2005, “
The Dynamic Capability Equations: A New Tool for Analyzing Manipulator Dynamic Performance
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
1
), pp.
115
123
.
8.
Khan
,
W. A.
, and
Angeles
,
J.
, 2006, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
168
178
.
9.
Kim
,
Y.
, and
Desa
,
S.
, 1993, “
The Definition, Determination, and Characterization of Acceleration Sets for Spatial Manipulators
,”
Int. J. Robot. Res.
0278-3649,
12
(
6
), pp.
572
587
.
10.
Rosenstein
,
M. T.
, and
Grupen
,
R. A.
, 2002, “
Velocity-Dependent Dynamic Manipulability
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2424
2429
.
11.
Lewis
,
F.
,
Jagannathan
,
S.
, and
Yesildirek
,
A.
, 1999,
Neural Network Control of Robot Manipulators and Nonlinear Systems
, 1st ed.,
Taylor & Francis
, New York.
12.
Vertut
,
J.
, and
Liegeois
,
A.
, 1981, “
General Design Criteria for Manipulators
,”
Mech. Mach. Theory
0094-114X,
16
(
1
), pp.
65
70
.
13.
Khatib
,
O.
, 1995, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Robot. Res.
0278-3649,
13
(
1
), pp.
19
36
.
14.
Asada
,
H.
, 1983, “
A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
105
(
3
), pp.
131
135
.
15.
Ma
,
O.
, and
Angeles
,
J.
, 1990, “
The Concept of Dynamic Isotropy and Its Applications to Inverse Kinematics and Trajectory Planning
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
481
486
.
16.
Singh
,
J. R.
, and
Rastegar
,
J.
, 1992, “
Optimal Synthesis of Robot Manipulators Based on Global Dynamic Parameters
,”
Int. J. Robot. Res.
0278-3649,
11
(
6
), pp.
538
548
.
17.
Li
,
M.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
, 2005, “
Dynamic Formulation and Performance Comparison of the 3-dof Modules of Two Reconfigurable pkm—The Tricept and Trivariant
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
6
), pp.
1129
1136
.
18.
Gregorio
,
R. D.
, and
Parenti-Castelli
,
V.
, 2004, “
Dynamics of a Class of Parallel Wrists
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
436
441
.
19.
Yoshikawa
,
T.
, 1985, “
Dynamic Manipulability of Robot Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
,
St. Louis
,
Missouri
, pp.
1033
1038
.
20.
Chiacchio
,
P.
,
Chiaverini
,
S.
,
Sciavicco
,
L.
, and
Siciliano
,
B.
, 1991, “
Reformulation of Dynamic Manipulability Ellipsoid for Robotic Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Sacramento
,
California
, Vol.
3
, pp.
2192
2197
.
21.
Khatib
,
O.
, and
Burdick
,
J.
, 1987, “
Optimization of Dynamics in Manipulator Design: The Operational Space Formulation
,”
Int. J. Robot. Res.
0278-3649,
2
(
2
), pp.
90
98
.
22.
Graettinger
,
T. J.
, and
Krogh
,
B. H.
, 1988, “
The Acceleration Radius: A Global Performance Measure for Robotic Manipulators
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
1
), pp.
60
69
.
23.
Bowling
,
A.
, and
Khatib
,
O.
, 2003, “
The Dynamic Loading Criteria in Actuator Selection for Desired Dynamic Performance
,”
Adv. Rob.
0169-1864,
17
(
7
), pp.
641
656
.
24.
Bowling
,
A.
, and
Khatib
,
O.
, 2002, “
Actuator Selection for Desired Dynamic Performance
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne
,
Switzerland
, Vol.
2
, pp.
1966
1973
.
25.
Armstrong
,
B.
,
Khatib
,
O.
, and
Burdick
,
J.
, 1986, “
The Explicit Model and Inertial Parameters of the PUMA 560 Arm
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
510
518
.
26.
Arora
,
J. S.
, 1989,
Introduction to Optimum Design
,
McGraw-Hill
, New York.
27.
Muir
,
T.
, and
Metzler
,
W. H.
, 1933.
A Treatise on the Theory of Determinants
, 1st ed.,
Longmans, Green
, New York.
You do not currently have access to this content.