A good balance between accuracy and efficiency is essential for reliability-based design (RBD). For this reason, sequential-loops formulations combined with the first-order reliability method (FORM) are usually used. FORM requires a nonlinear non-normal-to-normal transformation, which may increase the nonlinearity of a probabilistic constraint function significantly. The increased nonlinearity may lead to an increased error in reliability estimation. In order to improve accuracy and maintain high efficiency, the proposed method uses the accurate saddlepoint approximation for reliability analysis. The overall RBD is conducted in a sequence of cycles of deterministic optimization and reliability analysis. The reliability analysis is performed in the original random space without any nonlinear transformation. As a result, the proposed method provides an alternative approach to RBD with higher accuracy when the non-normal-to-normal transformation increases the nonlinearity of probabilistic constraint functions.

1.
Zang
,
T. A.
,
Hemsch
,
M. J.
,
Hilburger
,
M. W.
,
Kenny
,
S. P.
,
Luckring
,
J. M.
,
Maghami
,
P.
,
Padula
,
S. L.
, and
Stroud
,
W. J.
, 2002, “
Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles
,” NASA/TM-2002-211462, NASA,
Washington, D.C
.
2.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
J. Engrg. Mech. Div.
0044-7951,
100
(
EM1
), pp.
111
121
.
3.
Wu
,
Y.-T.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
, 2001, “
Safety-Factor Based Approach for Probabilistic-Based Design Optimization
,”
Proceedings 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit
, April 16–19, 2001,
Seattle, WA
.
4.
Chen
,
X.
, and
Hasselman
,
T. K.
, 1997, “
Reliability Based Structural Design Optimization for Practical Applications
,”
Proceedings 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structural Forum
, April 7–10, 1997,
Kissimmee, FL
.
5.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
6.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
1050-0472,
127
(
6
), pp.
1068
1076
.
7.
Liang
,
J.
,
Mourelatos
,
Z.
, and
Tu
,
J.
, 2004, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
Proceedings 2004 ASME International Design Engineering Technical Conferences and Computers & Information In Engineering Conference
, DETC2004–57255, September 28–October 2, 2004,
Salt Lake City, UT
.
8.
Wang
,
L.
, and
Kodiyalam
,
S.
, 2002, “
An Efficient Method for Probabilistic and Robust Design With Non-normal Distributions
,”
Proceedings 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Denver, CO
.
9.
Yang
,
R. J.
, and
Gu
,
L.
, 2004, “
Experience With Approximate Reliability-Based Optimization Method
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
1–2
), pp.
152
159
.
10.
Yang
,
R. J.
,
Chuang
,
C.
,
Gu
,
L.
, and
Li
,
G.
, 2005, “
Experience With Approximate Reliability-Based Optimization Methods II: An Exhaust System Problem
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
6
), pp.
488
497
.
11.
Der Kiureghian
,
A.
,
Zhang
Y.
, and
Li
,
C. C.
, 1994, “
Inverse Reliability Problem
,”
J. Eng. Mech.
0733-9399,
120
(
5
),
1150
1159
.
12.
Tu
,
J.
,
Choi
,
K. K.
, and
Young
,
H. P.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
121
(
4
), pp.
557
564
.
13.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2005, “
An Integrated Framework for Optimization under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
561
764
.
14.
Du
,
X.
, and
Sudjianto
,
A.
, 2004, “
The First Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
0001-1452,
42
(
6
), pp.
1199
1207
.
15.
Sudjianto
,
A.
,
Du
,
X.
, and
Chen
,
W.
, 2005, “
Probabilistic Sensitivity Analysis in Engineering Design using Uniform Sampling and Saddlepoint Approximation
,”
Proceedings SAE 2005 Transactions Journal of Passenger Cars: Mechanical Systems
, April 11–14, Detroit, MI, pp.
267
276
.
16.
Daniels
,
H. E.
, 1954, “
Saddlepoint Approximations in Statistics
,”
Ann. Math. Stat.
0003-4851,
25
(
4
), pp.
631
650
.
17.
Goutis
,
C.
, and
Casella
,
G.
, 1999, “
Explaining the Saddlepoint Approximation
,”
Am. Stat.
0003-1305,
53
(
3
), pp.
216
224
.
18.
Huzurbazar
,
S.
, 1999, “
Practical Saddlepoint Approximations
,”
Am. Stat.
0003-1305,
53
(
3
), pp.
225
232
.
19.
Lugannani
,
R.
, and
Rice
,
S. O.
, 1980, “
Saddlepoint Approximation for the Distribution of the Sum of Independent Random Variables
,”
Adv. Appl. Probab.
0001-8678,
12
, pp.
475
490
.
20.
Gatto
,
R.
, and
Ronchetti
,
E.
, 1996, “
General Saddlepoint Approximations of Marginal Densities and Tail Probabilities
,”
J. Am. Stat. Assoc.
0162-1459,
91
(
433
), pp.
666
673
.
21.
Wood
,
A. T. A.
,
Booth
,
J. G. B.
, and
Butler
,
R. W.
, 1993, “
Saddlepoint Approximations to the CDF of Some Statistics With Nonnormal Limit Distributions
,”
J. Am. Stat. Assoc.
0162-1459,
422
(
8
), pp.
480
486
.
22.
Jensen
,
J. L.
, 1995,
Saddlepoint Approximations
,
Clarendon
,
Oxford, UK
.
23.
Daniel
,
H. E.
, 1987, “
Tail Probability Approximations
,”
Int. Statist. Rev.
0306-7734,
55
(
1
), pp.
37
48
.
24.
Tvedt
,
L.
, 1988, “
Second Order Reliability by an Exact Integral
,”
Proceedings of the 2nd IFIP WG7.5 Conference
, September 26–28, 1988,
London, UK
, pp.
377
384
.
25.
Du
,
X.
, and
Sudjianto
,
A.
, 2004, “
A Saddlepoint Approximation Method for Uncertainty Analysis
,”
Proceedings 2004 ASME International Design Engineering Technical Conferences and the Computers and Information in Engineering Conference
, September 28–October 2, 2004,
Salt Lake City, UT
, DETC2004-57269.
26.
Huang
,
B.
, and
Du
,
X.
, 2005, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
1050-0472,
127
(
6
), pp.
1068
1076
.
27.
Johnson
,
N. L.
, and
Kotz
,
S.
, 1970,
Continuous Univariate Distributions-2
,
Wiley
,
New York
.
28.
Householder
,
A. S.
, 1953,
Principles of Numerical Analysis
,
McGraw-Hill
,
New York
, pp.
135
138
.
29.
Read
,
K. L. Q.
, 1998, “
A Lognormal Approximation for the Collector’s Problem
,”
Am. Stat.
0003-1305,
52
(
2
), pp.
179
180
.
30.
Huang
,
B.
, and
Du
,
X.
, 2006, “A Saddlepoint Approximation Based Simulation Method for Uncertainty Analysis,” International Journal of Reliability and Safety, 1(1/2), pp. 206–224.
31.
Arora
,
J. S.
, 2004,
Introduction to Optimization Design
,
Elsevier
,
New York
, pp.
24
29
.
You do not currently have access to this content.