Quality and performance are two important customer requirements in vehicle design. Driveline clunk negatively affects the perceived quality and must be minimized. This can be achieved using engine torque management, which is part of engine calibration. During a tip-in event, the engine torque rate of rise is limited until all the driveline lash is taken up. The engine torque rate of rise can negatively affect the vehicle throttle response, which determines performance. The engine torque management must be therefore balanced against throttle response. In practice, the engine torque rate of rise is calibrated manually. This article describes an analytical methodology for calibrating the engine torque considering uncertainty, in order to minimize clunk, while still meeting throttle response constraints. A set of predetermined engine torque profiles are considered, which span the practical range of interest. The transmission turbine speed is calculated for each profile using a bond graph vehicle model. Clunk is quantified by the magnitude of the turbine speed spike. Using the engine torque profiles and the corresponding turbine speed responses, a time-dependent metamodel is created using principal component analysis and kriging. The metamodel predicts the turbine speed response due to any engine torque profile and is used in deterministic and reliability-based optimizations to minimize clunk. Compared with commonly used production calibration, the clunk disturbance is reduced substantially without greatly affecting the vehicle throttle response.

1.
Langerberg
,
A.
, and
Egardt
,
B. S.
, 2002, “
Evaluation of Control Strategies for Automotive Powertrains With Backlash
,”
International Symposium on Advanced Vehicle Control
, Hiroshima, Japan.
2.
Lagerberg
,
A.
, and
Egardt
,
B. S.
, 2005, “
Model Predictive Control of Automotive Powertrains With Backlash
,”
Proceedings of the IFAC World Congress
, Prague, Czech Republic.
3.
Lagerberg
,
A.
, and
Egardt
,
B. S.
, 2007, “
Backlash Estimation With Application to Automotive Powertrains
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
3
), pp.
483
493
.
4.
Millo
,
F.
,
Ferraro
,
C. V.
,
Mallamo
,
F.
, and
Pilo
,
L.
, 2003, “
Numerical Simulation to Improve Engine Control During Tip-In Manoeuvres
,” SAE Paper No. 2003-01-0374.
5.
Theodossiades
,
S.
,
Gnanakumarr
,
M.
, and
Rahnejat
,
H.
, 2005, “
Root Cause Identification and Physics of Impact-Induced Driveline Noise in Vehicular Powertrain Systems
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
219
, (
11
), pp.
1303
1319
.
6.
Govindswamy
,
K.
,
Hueser
,
M.
,
D’Anna
,
T.
,
Diemer
,
P.
, and
Roxin
,
C.
, 2003, “
Study of Low-Frequency Driveline Clunk During Static Engagements
,” SAE Paper No. 2003-01-1480.
7.
Volinski
,
B.
, 1999, “
Automatic Transaxle Lash Study for Park Disengagement Clunk
,” SAE Paper No. 1999-01-1765.
8.
Chae
,
C.
,
Lee
,
Y.
,
Won
,
K.
, and
Kang
,
K.
, 2004, “
Experimental and Analytical Approach for Identification of Driveline Clunk Source and Transfer Path
,” SAE Paper No. 2004-01-1231.
9.
Biermann
,
J. W.
, and
Hagerodt
,
B.
, 1999, “
Investigation of the Clonk Phenomenon in Vehicle Transmissions: Measurement, Modeling and Simulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dynamics
,
213
(
1
), pp.
53
60
.
10.
Vafaei
,
S.
,
Menday
,
M.
, and
Rahnejat
,
H.
, 2001, “
Transient High-Frequency Elasto-Acoustic Response of a Vehicular Drivetrain to Sudden Throttle Demand
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dynamics
,
215
(
1
), pp.
35
52
.
11.
Theodossiades
,
S.
,
Gnanakumarr
,
M.
,
Rahnejat
,
H.
, and
Menday
,
M.
, 2004, “
Mode Identification in Impact-Induced High-frequency Vehicular Driveline Vibrations Using an Elasto-Multi-Body Dynamics Approach
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dynamics
,
218
(
2
), pp.
81
94
.
12.
Menday
,
M. T.
,
Rahnejat
,
H.
, and
Ebrahimi
,
M.
, 1999, “
Clonk an Onomatopoeic Response in Torsional Impact of Automotive Drivelines
,”
Int. J. Mech. Eng. Educ.
0306-4190,
213
(
4
), pp.
349
357
.
13.
Gnanakumarr
,
M.
,
Theodossiades
,
S.
,
Rahnejat
,
H.
, and
Menday
,
M.
, 2005, “
Impact-induced Vibration in Vehicular Driveline Systems: Theoretical and Experimental Investigations
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dynamics
,
219
(
1
), pp.
1
12
.
14.
Oh
,
W.
, and
Singh
,
R.
, 2005, “
Examination of Clunk Phenomena Using a Non-Linear Torsional Model of a Front-Wheel-Drive Vehicle With Manual Transmission
,”
Proceedings of the SAE
, Paper No. 2005-01-2291.
15.
Schumacher
,
T.
,
Biermann
,
J. W.
,
Jansz
,
N.
,
Willey
,
J.
, and
Küpper
,
K.
, 2003, “
Load Change Reactions of Passenger Cars: Method of Investigation and Improvement
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dynamics
,
217
(
4
), pp.
283
291
.
16.
Krentz
,
R. A.
, 1985, “
Vehicle Response to Throttle Tip-In/Tip Out
,” SAE Paper No. 850967.
17.
Crowther
,
A. R.
,
Zhang
,
N.
, and
Singh
,
R.
, 2005, “
Development of a Clunk Simulation Model for a Rear-Wheel-Drive Vehicle With Automatic Transmission
,” SAE Paper No. 2005-01-2292.
18.
Gilbert
,
D. A.
,
O'Leary
,
M. F.
, and
Rayce
,
J. A.
, 2001, “
Integrating Test and Analytical Methods for the Quantification and Identification of Manual Transmission Driveline Clunk
,” SAE Paper No. 2001-01-1502.
19.
Couderc
,
P.
,
Callenaere
,
J.
,
Der Hagopian
,
J.
,
Ferraris
,
G.
,
Kassai
,
A.
,
Borjesson
,
Y.
,
Verdillon
,
L.
, and
Gaimard
,
S.
, 1998, “
Vehicle Driveline Dynamic Behaviour: Experimentation and Simulation
,”
J. Sound Vib.
0022-460X,
218
(
1
), pp.
133
157
.
20.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
, 2000,
System Dynamics
,
Wiley
,
New York
.
21.
Louca
,
L. S.
,
Stein
,
J. L.
, and
Geoff
,
R. D.
, 2001, “
Generating Proper Integrated Dynamic Models for Vehicle Mobility Using a Bond Graph Formulation
,”
Proceedings of the International Conference on Bond Graph Modeling
, Phoenix, AZ, Vol.
33
, pp.
339
345
.
22.
Karnopp
,
D. C.
, 1976, “
Bond Graphs for Vehicle Dynamics
,”
Veh. Syst. Dyn.
0042-3114,
5
, pp.
171
184
.
23.
Wehrwein
,
D.
, and
Mourelatos
,
Z. P.
, 2008, “
Reliability-Based Design Optimization of Vehicle Drivetrain Dynamic Vehicle Performance
,”
Int. J. Prod. Dev.
,
5
(
1/2
), pp.
54
75
. 1477-9056
24.
Kim
,
H. M.
,
Kokkolaras
,
M.
,
Louca
,
L. S.
,
Delagrammatikas
,
G. J.
,
Michelena
,
N. F.
,
Filipi
,
Z. S.
,
Papalambros
,
P. Y.
,
Stein
,
J. L.
, and
Assanis
,
D. N.
, 2002, “
Target Cascading in Vehicle Redesign: A Class VI Truck Study
,”
Int. J. Veh. Des.
0143-3369,
29
(
3
), pp.
199
225
.
25.
Cressie
,
N.
, 1993,
Statistics for Spatial Data
,
Wiley
,
New York
.
26.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
J. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
435
.
27.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
, 2002, “
DACE: A MATLAB Kriging ToolBox
,” Technical Report No. IMM-TR-2002-12.
28.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
(
4
), pp.
370
380
.
29.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
. 0177-0667
30.
Simpson
,
T. W.
,
Lin
,
D. K. J.
, and
Chen
,
W.
, 2001, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
1598-0073,
2
(
3
), pp.
209
240
.
31.
Pacheco
,
J. E.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2003, “
Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
664
672
.
32.
Weiss
,
L. E.
,
Amon
,
C. H.
,
Finger
,
S.
,
Miller
,
E. D.
,
Romero
,
D.
,
Verdinelli
,
I.
,
Walker
,
L. M.
, and
Campbell
,
P. G.
, 2005, “
Bayesian Computer-Aided Experimental Design of Heterogeneous Scaffolds for Tissue Engineering
,”
Comput.-Aided Des.
0010-4485,
37
, pp.
1127
1139
.
33.
Romero
,
D. A.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2006, “
On Adaptive Sampling for Single and Multi-Response Bayesian Surrogate Models
,” ASME Paper No. DETC2006-99210.
34.
Romero
,
D. A.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2003, “
Modeling Time-Dependent Systems Using Multi-Stage Bayesian Surrogates
,” ASME Paper No. IMECE2003-55049.
35.
Romero
,
D. A.
,
Amon
,
C. H.
,
Finger
,
S.
, and
Verdinelli
,
I.
, 2004, “
Multi-Stage Bayesian Surrogates for the Design of Time-Dependent Systems
,” ASMEPaper No. DETC2004-57510.
36.
Sun
,
J.
, and
Vlahopoulos
,
N.
, 2005, “
Model Update Under Uncertainty and Error Estimation in Shock Applications
,” SAE Paper No. 2005-01-2373.
37.
Missoum
,
S.
, 2008, “
Probabilistic Optimal Design in the Presence of Random Fields
,”
Struct. Multidiscip. Optim.
1615-147X,
35
, pp.
523
530
.
38.
Ghanem
,
R.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York
.
39.
Strang
,
G.
, 1998,
Introduction to Linear Algebra
,
Wellesley-Cambridge
,
Wellesley, MA
.
40.
Wehrwein
,
D.
, and
Mourelatos
,
Z. P.
, 2007, “
Optimal Engine Torque Management for Reducing Driveline Clunk Using Time-Dependent Metamodels
,” SAE Paper No. 2007-01-2236.
41.
Ye
,
K. Q.
,
Li
,
W.
, and
Sundjianto
,
A.
, 2000, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plan. Infer.
0378-3758,
90
, pp.
145
159
.
42.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2008, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
Int. J. Prod. Dev.
,
5
(
1/2
), pp.
76
92
. 1477-9056
You do not currently have access to this content.