The act of creating a new product, system, or process is an innovation; the result of excogitation, study and experimentation. It is an inductive and/or deductive process. The inductive process involves studying systems that exist, for example, in nature, patents and products, and inducing from the behavior of these systems elemental features for innovating novel products. The deductive process involves deducing such aspects from hypothetical concepts and situations where systems or products could exist. By the application of a combined inductive and deductive approach, this paper reports on a methodology for the creation of innovative products with a broader functional repertoire than traditional designs. This breed of innovative products is coined as transformers, transforming into different configurations or according to different states. Current design theory lacks a systematic methodology for the creation of products that have the ability to transform. This paper identifies analogies in nature, patents, and products along with hypothesizing the existence of such products in different environments and situations. Transformation design principles are extracted by studying key design features and functional elements that make up a transforming product. These principles are defined and categorized according to their roles in general transformations. The principles and categorizations are then validated and applied to conceptualize transforming products as part of an innovative design process.

5.
2006, Milwaukee’s 6016–6 ¼ Sheet Orbital Palm Sander, http://www.tylertool.com/mi6014shorpa.htmlhttp://www.tylertool.com/mi6014shorpa.html.
9.
2005, Ryobi Jso45 Variable Speed Orbital Action Jig Saw, www.epinions.comwww.epinions.com.
13.
European Patent Office Website, http://ep.espacenet.comhttp://ep.espacenet.com.
14.
Freeland
,
R. E.
,
Bilyeu
,
G. D.
,
Veal
,
G. R.
,
Steiner
M. D.
, and
Carson
D. E.
, 1997, “
Large Inflatable Deployable Antenna Flight Experiment Results
,” International Astronautical Federation.
16.
Robbin
,
T.
, 1996,
Engineering a New Architecture
,
Quebeco-Eusey
,
Leominster, MA
.
17.
U.S. Patent and Trademark Office Website, http://www.upto.govhttp://www.upto.gov.
18.
Siddiqi
,
A.
, and
Weck
,
O. L.
, 2008, “
Modeling Methods and Conceptual Design Principles for Reconfigurable Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
10
), p.
101102
.
19.
Khire
,
R. A.
, and
Messac
,
A.
, 2008, “
Selection-Integrated Optimization (SIO) Methodology for Optimal Design of Adaptive Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
10
), p.
101401
.
20.
Collier
,
D. A.
, 1981, “
The Measurement and Operating Benefits of Component Part Commonality
,”
Decision. Sci.
,
12
(
1
), pp.
85
96
. 0011-7315
21.
Kota
,
S.
,
Sethuraman
,
K.
, and
Miller
,
R.
, 2000, “
A Metric for Evaluating Design Commonality in Product Families
,”
J. Mech. Des.
1050-0472,
122
(
4
), pp.
403
410
.
22.
McDermott
,
C. M.
, and
Stock
,
G. N.
, 1994, “
The Use of Common Parts and Designs in High-Tech Industries: A Strategic Approach
,”
Prod. Invent. Manage. J.
0897-8336,
35
(
3
), pp.
65
68
.
23.
Uzumeri
,
M.
, and
Sanderson
,
S.
, 1995, “
A Framework for Model and Product Family Competition
,”
Res. Policy
0048-7333,
24
(
4
), pp.
583
607
.
24.
Rothwell
,
R.
, and
Gardiner
,
P.
, 1990, “
Robustness and Product Design Families
,”
Design Management: A Handbook of Issues and Methods
,
Basil Blackwell Inc.
,
Cambridge, MA
, pp.
279
292
.
25.
Farrell
,
R. S.
, and
Simpson
,
T. W.
, 2003, “
Product Platform Design to Improve Commonality in Custom Products
,”
J. Intell. Manuf.
0956-5515,
14
(
6
), pp.
541
556
.
26.
Hernandez
,
G.
,
Allen
,
J. K.
,
Woodruff
,
G. W.
,
Simpson
,
T. W.
,
Bascaran
,
E.
,
Avila
,
L. F.
, and
Salinas
,
F.
, 2001, “
Robust Design of Product Families with Production Modeling and Evaluation
,”
ASME J. Mech. Des.
0161-8458,
123
(
2
), pp.
183
190
.
27.
Simpson
,
T. W.
,
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1996, “
Conceptual Design of a Family of Products Through the Use of the Robust Concept Exploration Method
,”
Sixth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Bellevue, WA.
28.
Simpson
,
T. W.
, and
Maier
,
J. R.
, and
Mistree
,
F.
, 2001, “
Product Platform Design: Method and Application
,”
Res. Eng. Des.
0934-9839,
13
, pp.
2
22
.
29.
Simpson
,
T. W.
, and
Seepersad
,
C. C.
, and
Mistree
,
F.
,2001, “
Balancing Commonality and Performance Within the Concurrent Design of Multiple Products in a Product Family
,”
Concurr. Eng. Res. Appl.
1063-293X,
9
(
3
), pp.
177
190
.
30.
Dahmus
,
J. B.
,
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
, 2000, “
Modular Product Architecture
,”
ASME DETC
, Baltimore, MD.
31.
Fujita
,
K.
, 2002, “
Product Variety Optimization Under Modular Architecture
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
953
965
.
32.
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
, 2000,
Modular Platform-Based Product Family Design
,
ASME DETC
, Baltimore, MD.
33.
Rosen
,
D. W.
, 1996, “
Design of Modular Product Architectures in Discrete Design Spaces Subject to Life Cycle Issues
,”
ASME DETC
, Irvine, CA.
34.
Siddique
,
Z.
, and
Rosen
,
D. W.
, 2000, “
Product Family Configuration Reasoning Using Discrete Design Spaces
,”
AMSE DETC
, Baltimore, MD.
35.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
, 2000, “
A Heuristic Method to Identify Modules From a Functional Description of a Product
,”
Des. Stud.
0142-694X,
21
(
1
), pp.
5
31
.
36.
Fujita
,
K.
, and
Ishii
,
K.
, 1997, “
Task Structuring Toward Computational Approaches to Product Variety Design
,”
ASME DETC
, Sacramento, CA.
37.
Ishii
,
K.
,
Juengel
,
C.
, and
Eubanks
,
C. F.
, 1995, “
Design for Product Variety: Key to Product Line Structuring
,”
ASME Design Engineering Division
,
83
(
2
), pp.
499
506
.
38.
Martin
,
M. V.
, and
Ishii
,
K.
, 1996, “
Design for Variety: A Methodology for Understanding the Costs of Product Proliferation
,”
ASME DETC
, Irvine, CA.
39.
Martin
,
M. V.
, and
Ishii
,
K.
, 2002, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
0934-9839,
13
(
4
), pp.
213
235
.
40.
Tilstra
,
A. H.
,
Backlund
,
P. B.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
, 2008, “
Industrial Case Studies in Product Flexibility for Future Evolution: An Application and Evaluation of Design Guidelines
,”
ASME IDETC/CIE
,
ASME
,
New York
.
41.
Tseng
,
M. M.
, and
Jiao
,
J.
, 1999, “
Methodology of Developing Product Family Architecture for Mass Customization
,”
J. Intell. Manuf.
0956-5515,
10
(
1
), pp.
3
20
.
42.
Salemi
,
B.
,
Moll
,
M.
, and
Shen
,
W. -M.
, 2006, “
SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System
,”
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Beijing, China.
43.
Shen
,
W. M.
, and
Yim
,
M.
, 2002, “
Self-Reconfigurable Modular Robots
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
7
(
4
), pp.
401
402
.
44.
Moon
,
Y. M.
, and
Kota
,
S.
, 2002, “
Generalized Kinematic Modeling of Reconfigurable Machine Tools
,”
ASME J. Mech. Des.
0161-8458,
124
(
1
), pp.
47
51
.
45.
Gosselin
,
C. M.
, 2006, “
Adaptive Robotic Mechanical Systems: A Design Paradigm
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
192
198
.
46.
Papalambros
,
P. Y.
, 2008, “
Design Innovation
,”
ASME J. Mech. Des.
0161-8458,
130
(
4
), p.
040201
.
47.
Bar-Cohen
,
Y.
, 2006,
Biomemetics: Biological Inspired Technologies
,
Taylor and Francis
,
Boca Raton, FL
.
48.
Chiu
,
I.
, and
Shu
,
L. H.
, 2004,“
Natural Language Analysis for Biomimetic Design
,”
Proceedings of Design Engineering Technical Conference
, Salt Lake City, UT.
49.
Chiu
,
I.
, and
Shu
,
L. H.
, 2007, “
Understanding the Use of Language Stimuli in Concept Generation
,”
Proceedings of the ASME International Design Engineering Technical Conferences
, Las Vegas, NV, Sept. 4–7.
50.
Mak
,
T. W.
, and
Shu
,
L. H.
, 2004, “
Use of Biological Phenomenon in Design by Analogy
,”
Proceedings of the Design Engineering Technical Conference
, Salt Lake City, UT.
51.
Purves
,
W. K.
,
Sadava
,
D.
,
Orians
,
G. H.
, and
Heller
,
H. C.
, 2001,
Life: The Science of Biology
, 6th ed.,
Sinauer Associates Inc.
,
Sunderland, MA
.
53.
Popular Mechanics 2005–2007, Hearst Magazines Division, The Hearst Corporation, http://www.popularmechnaics.com/http://www.popularmechnaics.com/.
54.
Popular Science Magazine 2005–2007, Bonnier Corporation, http://www.popsci.com/popsci/http://www.popsci.com/popsci/.
56.
Mollerup
,
P.
, 2001,
Collapsible: The Genius of Space Saving
,
Chronicle Books
,
San Francisco, CA
.
57.
Pellegrino
,
S.
, 2001,
Deployable Structures, CISM Courses and Lectures— No. 412
,
Springer
,
New York
.
58.
Altshuller
,
G. S.
, 1984,
Creativity as an Exact Science
,
Gordon and Breach
,
Luxembourg
.
59.
Domb
,
E.
, and
Slocum
,
M.
, The TRIZ Journal, 1998. http://www.triz-journal.com/http://www.triz-journal.com/.
60.
Otto
,
K.
, and
Wood
,
K.
, 2001,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
61.
Sushkov
,
V.
,
Mars
,
N.
, and
Wognum
,
P.
, 1995, “
Introduction to TIPS: Theory for Creative Design
,”
Artif. Intell. Eng.
0954-1810,
9
, pp.
177
189
.
62.
Greer
,
J.
,
Jensen
,
D.
, and
Wood
,
K.
, 2004, “
Effort Flow Analysis: A Methodology for Directed Product Evolution
,”
Des. Stud.
0142-694X,
25
(
2
), pp.
103
214
.
63.
Greer
,
J.
,
Wood
,
J.
,
Jensen
,
D.
, and
Wood
,
K. L.
, 2002, “
Guidelines for Product Evolution Using Effort Flow Analysis: Results of an Empirical Study
,”
ASME Design Theory and Methodology Conference
, September.
64.
Keese
,
D.
,
Neha
,
P. T.
,
Seepersad
,
C.
, and
Wood
,
K. L.
, 2006, “
An Enhanced Change Modes and Effects Analysis (CMEA) Tool for Measuring Product Flexibility With Applications to Consumer Products
,”
ASME Design Automation Conference, Design Engineering Technical Conference
, Philadelphia, PA, Sep. 10–13.
65.
Qureshi
,
A.
,
Murphy
,
J.
,
Seepersad
,
C.
,
Wood
,
K. L.
, and
Jensen
,
D.
, 2006, “
Principles of Product Flexibility
,”
ASME International Design Theory and Methodology Conference
, Philadelphia, PA, Sep. 10–13.
67.
Tennant
,
L. H.
,
Herrin
,
A. A.
, and
Simmons
,
G. L.
, 1988, “
Towel That Converts Into a Bag
,” U.S. Patent No. 4,794,029.
69.
Baldwin
,
T.
,
Rodarte
,
L. E. E.
,
Karidis
,
J. P.
, and
Moffatt
S. S.
, 2004, “
Folding Keyboard
,” U.S. Patent No. 6793421.
72.
Colledge
,
A. L.
, and
Johnson
,
H. I.
, 1989, “
Portable Multi-Purpose Exercise Device
,” U.S. Patent No. 4,856,775.
74.
Geary
,
J. A.
, 2000, Geary Convertible Crutch System, U.S. Patent No. 6,085,766.
77.
Ackeret
,
P.
, 2002, “
Multi-Purpose Hand-Held Device
,” U.S. Patent No. 6,493,893.
80.
Roccaforte
,
H. I.
, 1980, “
Self Locking Tray and Blank for Forming Same
,” U.S. Patent No. 4,227,640.
84.
Pitt
,
D. M.
, 2006, “
Apparatus for Increase of Aircraft Lift and Maneuverability
,” U.S. Patent 7,028,948.
89.
DeMars
,
R. A.
, 1995, “
Combination Sleeping/Carry Bag
,” U.S. Patent No. 5,404,600.
92.
Rickey
,
R. B.
, 1982, “
Exercising Device
,” U.S. Patent Np. 4,324,399.
93.
Kebadze
,
E.
,
Guest
,
S. D.
, and
Pellegrino
,
S.
, 2004, “
Bistable Prestressed Shell Structures
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
2801
2820
.
95.
Villa
,
F.
, 2005, “
Umbrella Apparatus
,” U.S. Patent No. 6,910,490.
97.
2005, Synaptic Connection Between Two Brain Cells (Neurons), http://www.karapelou.com/work.asphttp://www.karapelou.com/work.asp.
98.
Lazerman
,
L.
, 2002, Modular Structure, U.S. Patent No. 20020115373.
100.
Lau
,
K. W.
, 2001, Inflatable Chair, U.S. Patent No. 6,328,385.
102.
Wang
,
F. C.
, 1989, “
Foldable Multipurpose Bicycle
,” U.S. Patent No. 4,842,292.
105.
Vann
,
C. S.
, 2001, “
Adjustable-Length Writing Instrument
,” U.S. Patent No. 6,283,657.
108.
Ogawa
,
I.
, 1980, “
Articulated Reconfigurable Robot Doll
,” U.S. Patent No. 4,206,564.
111.
Orozco
,
M. J.
, 2005, “
Nestable Cart
,” U.S. Patent No. 6,860,493.
114.
Jacobsen
,
S.
,
Smith
,
F. M.
,
Oliver
,
M.
,
Maggio
,
C. S.
, 2006, “
Reconfigurable Articulated Leg and Wheel
,” U.S. Patent No. 7,017,687, B1.
117.
Yeh
,
C. T.
, 1993, “
Foldable Bicycle
,” U.S. Patent No. 5,398,955.
120.
Crane
,
C. D.
, III
, and
Haukoos
,
D. S.
, 1990, “
Hybrid Robotic Vehicle
,” U.S. Patent No. 4,977,971.
124.
Wagner
,
E. C.
, 2001, “
Multifunction Dental Appliance
,” U.S. Patent No. 6,247,477.
127.
Vann
,
C. S.
, 2003, “
Telescoping Writing Instrument
,” U.S. Patent No. 6,616,365.
134.
Singh
,
V.
,
Warren
,
L.
,
Putnam
,
N.
,
Walther
,
B.
,
Becker
,
P.
,
Danielson
,
A.
,
Koraishy
,
B.
,
Wood
,
W.
,
Jensen
,
D.
, and
Szmerekovsky
,
A.
, 2006, “
A Novel Exploration Into Gust Resistant Operation of MAVs/UAVs Through Transformation
,”
Second US-Euro MAV Conference
, Destin, FL.
135.
Skiles
,
S. M.
,
Singh
,
V.
,
Krager
,
J. E.
,
Seepersad
,
C. C.
,
Wood
,
K. L.
, and
Jensen
,
D.
, 2006, “
Adapted Concept Generation and Computational Techniques for the Application of A Transformer Design Theory
,”
Proceedings of the ASME International Design Engineering Technical Conferences
, Philadelphia, PA.
136.
Pahl
,
G.
, and
Beitz
,
W.
, 1996,
Engineering Design—A Systematic Approach
, 2nd Rev. Ed.,
Springer
,
London
.
You do not currently have access to this content.