The proper orthogonal decomposition method has been employed to extract the important field signatures of random field observed in an engineering product or process. Our preliminary study found that the coefficients of the signatures are statistically uncorrelated but may be dependent. To this point, the statistical dependence of the coefficients has been ignored in the random field characterization for probability analysis and design. This paper thus proposes an effective random field characterization method that can account for the statistical dependence among the coefficients for probability analysis and design. The proposed approach has two technical contributions. The first contribution is the development of a natural approximation scheme of random field while preserving prescribed approximation accuracy. The coefficients of the signatures can be modeled as random field variables, and their statistical properties are identified using the chi-square goodness-of-fit test. Then, as the paper’s second technical contribution, the Rosenblatt transformation is employed to transform the statistically dependent random field variables into statistically independent random field variables. The number of the transformation sequences exponentially increases as the number of random field variables becomes large. It was found that improper selection of a transformation sequence among many may introduce high nonlinearity into system responses, which may result in inaccuracy in probability analysis and design. Hence, this paper proposes a novel procedure of determining an optimal sequence of the Rosenblatt transformation that introduces the least degree of nonlinearity into the system response. The proposed random field characterization can be integrated with any advanced probability analysis method, such as the eigenvector dimension reduction method or polynomial chaos expansion method. Three structural examples, including a microelectromechanical system bistable mechanism, are used to demonstrate the effectiveness of the proposed approach. The results show that the statistical dependence in the random field characterization cannot be neglected during probability analysis and design. Moreover, it is shown that the proposed random field approach is very accurate and efficient.

1.
Zou
,
T.
,
Mahadevan
,
S.
,
Mourelatos
,
Z.
, and
Meernik
,
P.
, 2002, “
Reliability Analysis of Automotive Body-Door Subsystem
,”
Reliab. Eng. Syst. Saf.
0951-8320,
78
(
3
), pp.
315
324
.
2.
Penmetsa
,
R.
, and
Grandhi
,
R. V.
, 2002, “
Structural System Reliability Quantification Using Multi-Point Function Approximations
,”
AIAA J.
0001-1452,
40
(
12
), pp.
2526
2531
.
3.
Maute
,
K.
, and
Frangopol
,
D. M.
, 2003, “
Reliability-Based Design of MEMS Mechanisms by Topology Optimization
,”
Comput. Struct.
0045-7949,
81
, pp.
813
824
.
4.
Qu
,
X.
, and
Haftka
,
R. T.
, 2004, “
Reliability-Based Design Optimization Using Probability Sufficiency Factor
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
5
), pp.
314
325
.
5.
Du
,
X.
, and
Chen
,
W.
, 2005, “
Collaborative Reliability Analysis under the Framework of Multidisciplinary Systems Design
,”
Optim. Eng.
1389-4420,
6
(
1
), pp.
63
84
.
6.
Youn
,
B. D.
,
Choi
,
K. K.
,
Gu
,
L.
, and
Yang
,
R. -J.
, 2004, “
Reliability-Based Design Optimization for Crashworthiness of Side Impact
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
3–4
), pp.
272
283
.
7.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
An Investigation of Nonlinearity of Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
126
(
3
), pp.
403
411
.
8.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Tang
,
J.
, 2005, “
Structural Durability Design Optimization and Its Reliability Assessment
,”
Int. J. Prod. Dev.
,
1
(
3/4
), pp.
383
401
.
9.
Smith
,
N.
, and
Mahadevan
,
S.
, 2005, “
Probabilistic Design of Aerospace Vehicles: Coupling Global and Local Requirements
,”
J. Spacecr. Rockets
0022-4650,
42
(
4
), pp.
752
760
.
10.
Yin
,
X.
, and
Chen
,
W.
, 2006, “
Enhanced Sequential Optimization and Reliability Assessment Method
,”
Struct. Infrastruct. Eng.
1573-2479,
2
(
3
), pp.
261
275
.
11.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
(
4
), pp.
370
380
.
12.
Kim
,
C.
, and
Choi
,
K. K.
, 2008, “
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
121401
.
13.
Li
,
M.
,
William
,
N.
, and
Azarm
,
S.
, 2009, “
Interval Uncertainty Reduction and Single-Disciplinary Sensitivity Analysis With Multi-Objective Optimization
,”
ASME J. Mech. Des.
0161-8458,
131
(
3
), p.
031007
.
14.
Nguyen
,
T. H.
,
Song
,
J.
, and
Paulino
,
G. H.
, 2010, “
Single-Loop System Reliability-Based Design Optimization Using Matrix-Based System Reliability Method: Theory and Applications
,”
ASME J. Mech. Des.
0161-8458,
132
(
1
), p.
011005
.
15.
Yamazaki
,
F.
, and
Shinozuka
,
M.
, 1990, “
Simulation of Stochastic Fields by Statistical Preconditioning
,”
J. Eng. Mech.
0733-9399,
116
(
2
), pp.
268
287
.
16.
Liu
,
P. L.
, and
Der Kiureghian
,
A.
, 1991, “
Finite Element Reliability of Geometrically Nonlinear Uncertain Structures
,”
J. Eng. Mech.
0733-9399,
117
(
8
), pp.
1806
1825
.
17.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991, “
Spectral Stochastic Finite Element Formulation for Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
117
(
10
), pp.
2351
2373
.
18.
Liu
,
P.
, and
Liu
,
K.
, 1993, “
Selection of Random Field Mesh in Finite Element Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
119
(
4
), pp.
667
680
.
19.
Zhang
,
J.
, and
Ellingwood
,
B.
, 1994, “
Orthogonal Series Expansions of Random Fields in Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
120
(
12
), pp.
2660
2677
.
20.
Sudret
,
B.
, and
Der Kiureghian
,
A.
, 2000, “
Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report
,” Department of Civil and Environmental Engineering, University of California, Technical Report No. UCB/SEMM-2000/08.
21.
Rajaee
,
M.
,
Karlsson
,
S. K. F.
, and
Sirorich
,
L.
, 1994, “
Low-Dimensional Description of Free-Shear-Flow Coherent Structures and Their Dynamical Behavior
,”
J. Fluid Mech.
0022-1120,
258
, pp.
1
29
.
22.
Tamura
,
Y.
,
Suganuma
,
S.
,
Kikuchi
,
H.
, and
Hibi
,
K.
, 1999, “
Proper Orthogonal Decomposition of Random Wind Pressure Field
,”
J. Fluids Struct.
0889-9746,
13
, pp.
1069
1095
.
23.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge Monographs on Mechanics
),
Cambridge University Press
,
Cambridge
.
24.
Fukunaga
,
K.
, 1990,
Introduction to Statistical Recognition
,
Academic
,
New York
.
25.
Der Kiureghian
,
A.
, and
Ke
,
J. B.
, 1988, “
The Stochastic Finite Element Method in Structural Reliability
,”
Probab. Eng. Mech.
0266-8920,
3
(
2
), pp.
83
91
.
26.
Vanmarcke
,
E. H.
, and
Grigoriu
,
M.
, 1983, “
Stochastic Finite Element Analysis of Simple Beams
,”
J. Eng. Mech.
0733-9399,
109
(
5
), pp.
1203
1214
.
27.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
, 1986, “
Random Field Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
(
10
), pp.
1831
1845
.
28.
Turk
,
M.
, and
Pentland
,
A.
, 1991, “
Eigenfaces for Recognition
,”
J. Cogn Neurosci.
0898-929X,
3
(
1
), pp.
71
86
.
29.
Basudhar
,
A.
, and
Missoum
,
S.
, 2009, “
A Sampling-Based Approach for Probabilistic Design with Random Fields
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
(
47–48
), pp.
3647
3655
.
30.
Yin
,
X.
,
Lee
,
S.
,
Chen
,
W.
, and
Liu
,
W. K.
, 2009, “
Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
,”
ASME J. Mech. Des.
0161-8458,
131
(
2
), p.
021006
.
31.
Chen
,
S.
,
Chen
,
W.
, and
Lee
,
S.
, 2010, “
Level Set Based Robust Shape and Topology Optimization Under Random Field Uncertainties
,”
Struct. Multidiscip. Optim.
1615-147X,
41
(
4
), pp.
507
524
.
32.
Missoum
,
S.
, 2008, “
Probabilistic Optimal Design in the Presence of Random Fields
,”
Struct. Multidiscip. Optim.
1615-147X,
35
, pp.
523
530
.
33.
Rabitz
,
H.
,
Alis
,
O. F.
,
Shorter
,
J.
, and
Shim
,
K.
, 1999, “
Efficient Input-Output Model Representations
,”
Comput. Phys. Commun.
0010-4655,
117
, pp.
11
20
.
34.
Rabitz
,
H.
, and
Alis
,
O. F.
, 1999, “
General Foundations of High-Dimensional Model Representations
,”
J. Math. Chem.
0259-9791,
25
, pp.
197
233
.
35.
Xu
,
H.
, and
Rahman
,
S.
, 2004, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
1992
2019
.
36.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
, 2008, “
Eigenvector Dimension-Reduction (EDR) Method for Derivative-Free Uncertainty Quantification
,”
Struct. Multidiscip. Optim.
1615-147X,
37
(
1
), pp.
13
28
.
37.
Lee
,
S. H.
, and
Chen
,
W.
, 2009, “
A Comparative Study of Uncertainty Propagation Methods for Black-Box Type Problems
,”
Struct. Multidiscip. Optim.
1615-147X,
37
(
3
), pp.
239
253
.
38.
Hu
,
C.
, and
Youn
,
B. D.
, 2009, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems
,”
ASME 2009 IDETC-CIE
, San Diego, CA.
39.
Li
,
C.
, and
Der Kiureghian
,
A.
, 1993, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
0733-9399,
119
(
6
), pp.
1136
1154
.
40.
Wang
,
P.
,
Youn
,
B. D.
,
Xi
,
Z.
, and
Kloess
,
A.
, 2009, “
Bayesian Reliability Analysis With Subjective, Insufficient, and Evolving Data Sets
,”
ASME J. Mech. Des.
0161-8458,
131
(
11
), p.
111008
.
41.
Le Maître
,
O. P.
,
Reagan
,
M.
,
Najm
,
H. N.
,
Ghanem
,
R. G.
, and
Knio
,
O. M.
, 2002, “
A Stochastic Projection Method for Fluid Flow: II. Random Process
,”
J. Comput. Phys.
0021-9991,
181
(
1
), pp.
9
44
.
42.
Gerstner
,
T.
, and
Griebel
,
M.
, 1998, “
Numerical Integration Using Sparse Grids
,”
Numer. Algorithms
1017-1398,
18
(
3/4
), pp.
209
232
.
43.
Buckland
,
T. B.
, 1984, “
Monte Carlo Confidence Intervals
,”
Biometrics
0006-341X,
40
(
3
), pp.
811
817
.
44.
Goll
,
C.
,
Bacher
,
W.
,
Bustgens
,
B.
,
Maas
,
D.
,
Menz
,
W.
, and
Schomburg
,
W. K.
, 1996, “
Microvalves With Bistable Buckled Polymer Diaphragms
,”
J. Micromech. Microeng.
0960-1317,
6
, pp.
77
79
.
45.
Qiu
,
J.
,
Lang
,
J. H.
,
Slocum
,
A. H.
, and
Strumpler
,
R.
2003, “
A High-Current Electrothermal Bistable MEMS Relay
,”
Micro Electro Mechanical Systems (MEMS)
, MEMS-03, Kyoto, pp.
64
67
.
46.
Hoffmann
,
M.
,
Kopka
,
P.
, and
Voges
,
E.
, 1999, “
Bistable Micromechanical Fiber-Optic Switches on Silicon With Thermal Actuators
,”
Sens. Actuators
0250-6874,
78
, pp.
28
35
.
47.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
, 2004, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
1057-7157,
13
, pp.
137
146
.
48.
Cazottes
,
P.
,
Femandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
, 2009, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
0161-8458,
131
(
10
), p.
101001
.
You do not currently have access to this content.