This paper presents the use of a mathematical model in updating a decision maker’s belief before selecting a product/system concept and demonstrates a procedure to calculate the maximum monetary value of such a model in terms of the expected value of information. Acquiring information about uncertainty and updating belief according to the new information is an important step in concept selection. However, obtaining additional information can be considered beneficial only if the acquisition cost is less than the benefit. In this paper, a mathematical model is used as an information source that predicts outcomes of an uncertainty. The prediction, however, is imperfect information because the model is constructed based on simplifying assumptions. Thus, the expected value of imperfect information needs to be calculated in order to evaluate the tradeoff between the accuracy and the cost of model prediction (information). The construction and analysis of a mathematical model, the calculation of the expected value of information (model prediction) and updating the belief based on the model prediction are illustrated using a concept selection for a public project.

1.
Gonzalez-Zugasti
,
J. P.
,
Otto
,
K. N.
, and
Baker
,
J. D.
, 2001, “
Assessing Value in Platformed Product Family Design
,”
Res. Eng. Des.
0934-9839,
13
(
1
), pp.
30
41
.
2.
Roser
,
C.
,
Kazmer
,
D.
, and
Rinderle
,
J.
, 2003, “
An Economic Design Change method
,”
ASME J. Mech. Des.
0161-8458,
125
(
2
), pp.
233
239
.
3.
Fitch
,
P.
, and
Cooper
,
J. S.
, 2005, “
Life Cycle Modeling for Adaptive and Variant Design Part 1: Methodology
,”
Res. Eng. Des.
0934-9839,
15
(
4
), pp.
216
228
.
4.
Fitch
,
P.
, and
Cooper
,
J. S.
, 2005, “
Life Cycle Modeling for Adaptive and Variant Design Part 2: Case Study
,”
Res. Eng. Des.
0934-9839,
15
(
4
), pp.
229
241
.
5.
Mocko
,
G. M.
, and
Paasch
,
R.
, 2005, “
Incorporating Uncertainty in Diagnostic Analysis of Mechanical Systems
,”
ASME J. Mech. Des.
0161-8458,
127
(
2
), pp.
315
325
.
6.
Mahadevan
,
S.
, and
Rebba
,
R.
, 2006, “
Inclusion of Model Errors in Reliability-Based Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
936
944
.
7.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2006, “
A Methodology to Manage System-Level Uncertainty During Conceptual Design
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
959
968
.
8.
Mehr
,
A. F.
, and
Tumer
,
I. Y.
, 2006, “
Risk-Based Decision-Making for Managing Resources During the Design of Complex Space Exploration Systems
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
1014
1022
.
9.
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
, 2006, “
The Value of Using Imprecise Probabilities in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
969
979
.
10.
Georgiopoulos
,
P.
,
Johsson
,
M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Optimal Design Decisions to the Theory of the Firm: The Case of Resource Allocation
,”
ASME J. Mech. Des.
0161-8458,
127
(
3
), pp.
358
366
.
11.
Suh
,
E. S.
,
de Weck
,
O. L.
, and
Chang
,
D.
, 2007, “
Flexible Product Platforms: Framework and Case Study
,”
Res. Eng. Des.
0934-9839,
18
(
2
), pp.
67
89
.
12.
Vanegas
,
L. V.
, and
Labib
,
A. W.
, 2005, “
Fuzzy Approaches to Evaluation in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
127
(
1
), pp.
24
33
.
13.
Du
,
L.
,
Choi
,
K. K.
,
Youn
,
B. D.
, and
Gorsich
,
D.
, 2006, “
Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
928
935
.
14.
Haftka
,
R. T.
,
Rosca
,
R. I.
, and
Nikolaidis
,
E.
, 2006, “
An Approach for Testing Methods for Modeling Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
5
), pp.
1038
1049
.
15.
Nikolaidis
,
E.
, 2007, “
Decision-Based Approach for Reliability Design
,”
ASME J. Mech. Des.
0161-8458,
129
(
5
), pp.
466
475
.
16.
Zhou
,
J.
, and
Mourelatos
,
Z. P.
, 2008, “
A Sequential Algorithm for Possibility-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
130
(
1
), p.
011001
.
17.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2006, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
901
908
.
18.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
, 2006, “
A Bayesian Approach to Reliability-Based Optimization With Incomplete Information
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
909
918
.
19.
Guerin
,
F.
, and
Hambli
,
R.
, 2007, “
Lifetime Distribution Estimation of Boot Seals in Automotive Applications by Bayesian Method
,”
ASME J. Mech. Des.
0161-8458,
129
(
3
), pp.
275
282
.
20.
Hazelrigg
,
G. A.
, 1999, “
On the Role and Use of Mathematical Models in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
121
(
3
), pp.
336
341
.
21.
Howard
,
R. A.
, 1970, “
Decision Analysis: Perceptive on Inference, Decision, and Experimentation
,”
Proc. IEEE
0018-9219,
58
(
5
), pp.
632
643
.
22.
Howard
,
R. A.
, 1966, “
Information Value Theory
,”
IEEE Trans. Syst. Sci. Cybern.
0536-1567,
2
(
1
), pp.
22
26
.
23.
Matheson
,
J. E.
, 1968, “
The Economic Value of Analysis and Computation
,”
IEEE Trans. Syst. Sci. Cybern.
0536-1567,
4
(
3
), pp.
325
332
.
24.
Malak
,
R. J.
, Jr.
, and
Paredis
,
C. J. J.
, 2007, “
Validating Behavioral Models for Reuse
,”
Res. Eng. Des.
0934-9839,
18
(
3
), pp.
111
128
.
25.
Pacheco
,
J. E.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2003, “
Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process
,”
ASME J. Mech. Des.
0161-8458,
125
(
4
), pp.
664
672
.
26.
Apley
,
D. W.
,
Liu
,
J.
, and
Chen
,
W.
, 2006, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
945
958
.
27.
Chen
,
W.
,
Xiong
,
Y.
,
Tsui
,
K. -L.
, and
Wang
,
S.
, 2008, “
A Design-Driven Validation Approach Using Bayesian Prediction Models
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
), p.
021101
.
28.
Joseph
,
V. R.
,
Hung
,
Y.
, and
Sudjianto
,
A.
, 2008, “
Blind Kriging: A New Method for Developing Metamodels
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
), p.
031102
.
29.
Xiong
,
Y.
,
Chen
,
W.
, and
Tsui
,
K. -L.
, 2008, “
A New Variable-Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling
,”
ASME J. Mech. Des.
0161-8458,
130
(
11
), p.
111401
.
30.
Radhakrishnan
,
R.
, and
McAdams
,
D. A.
, 2005, “
A Methodology for Model Selection in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
127
(
3
), pp.
378
387
.
31.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
411
418
.
32.
Li
,
H.
, and
Azarm
,
S.
, 2002, “
An Approach for Product Line Design Selection Under Uncertainty and Competition
,”
ASME J. Mech. Des.
0161-8458,
124
(
3
), pp.
385
392
.
33.
Wassenaar
,
H. J.
, and
Chen
,
W.
, 2003, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
490
497
.
34.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
, 2005, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
514
523
.
35.
Michalek
,
J. J.
,
Papalambros
,
P. Y.
, and
Skerlos
,
S. J.
, 2004, “
A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions
,”
ASME J. Mech. Des.
0161-8458,
126
(
6
), pp.
1062
1070
.
36.
Shiau
,
C. -S. N.
, and
Michalek
,
J. J.
, 2009, “
Should Designers Worry About Market Systems?
,”
ASME J. Mech. Des.
0161-8458,
131
(
1
), p.
011011
.
37.
Wood
,
W. H.
, and
Agogino
,
A. M.
, 2005, “
Decision-Based Conceptual Design: Modeling and Navigating Heterogeneous Design Spaces
,”
ASME J. Mech. Des.
0161-8458,
127
(
1
), pp.
2
11
.
38.
Ling
,
J. M.
,
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
, 2006, “
Managing the Collection of Information Under Uncertainty Using Information Economics
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
980
990
.
39.
Howard
,
R. A.
, 1966, “
Decision Analysis: Applied Decision Theory
,”
Proceedings of the Fourth International Conference on Operational Research
,
D. B.
Hertz
and
J.
Melese
, eds.,
Wiley-Interscience
,
New York
, pp.
55
71
.
40.
Raiffa
,
H.
, 1968,
Decision Analysis: Introductory Lectures on Choices Under Uncertainty
,
Addison-Wesley
,
Reading, MA
.
41.
Raiffa
,
H.
, and
Schlaifer
,
R.
, 1968,
Applied Statistical Decision Theory
,
M.I.T. Press
,
Cambridge, MA
.
42.
Keeney
,
R. L.
, and
Raiffa
,
H.
, 1976,
Decision With Multiple Objectives: Preferences and Value Tradeoffs
,
Wiley
,
New York
.
43.
Clemen
,
R. T.
, 1996,
Making Hard Decisions: An Introduction to Decision Analysis
,
Duxbury
,
Belmont, CA
.
44.
Hazelrigg
,
G. A.
, 1999, “
An Axiomatic Framework for Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
121
(
3
), pp.
342
347
.
45.
Lawrence
,
D. B.
, 1999,
The Economic Value of Information
,
Springer-Verlag
,
New York
.
46.
Takai
,
S.
, and
Ishii
,
K.
, 2008, “
A Decision-Analytic System Concept Selection for a Public Project
,”
ASME J. Mech. Des.
0161-8458,
130
(
11
), p.
111101
.
47.
Howard
,
R. A.
, and
Matheson
,
J. E.
, 1984, “
Influence Diagrams
,”
Readings on the Principles and Applications of Decision Analysis
,
R. A.
Howard
and
J. E.
Matheson
, eds.,
Strategic Decision
,
Menlo Park, CA
, Vol.
2
, pp.
719
762
.
48.
Howard
,
R. A.
, 1988, “
From Influence to Relevance to Knowledge
,”
Influence Diagrams Belief Nets and Decision Analysis
,
R. M.
Oliver
and
J. Q.
Smith
, eds.,
Wiley
,
New York, NY
, pp.
3
23
.
49.
Howard
,
R. A.
, 1989, “
Knowledge Maps
,”
Manage. Sci.
0025-1909,
35
(
8
), pp.
903
922
.
50.
Spetzler
,
C. S.
, and
Stael von Holstein
,
C. -A. S.
, 1975, “
Probability Encoding in Decision Analysis
,”
Manage. Sci.
0025-1909,
22
(
3
), pp.
340
358
.
51.
Keefer
,
D.
, and
Bodily
,
S.
, 1983, “
Three-Point Approximations for Continuous Random Variables
,”
Manage. Sci.
0025-1909,
29
(
5
), pp.
595
609
.
52.
Howard
,
R. A.
, 1988, “
Decision Analysis: Practice and Promise
,”
Manage. Sci.
0025-1909,
34
(
6
), pp.
679
695
.
53.
Wilber
,
D. Q.
, 2006, “
Airbus Bust, Boeing Boost
,” Washington Post, Nov. 8.
You do not currently have access to this content.