Choice models play a critical role in enterprise-driven design by providing a link between engineering design attributes and customer preferences. However, existing approaches do not sufficiently capture heterogeneous consumer preferences nor address the needs of complex design artifacts, which typically consist of many subsystems and components. An integrated Bayesian hierarchical choice modeling (IBHCM) approach is developed in this work, which provides an integrated solution procedure and a highly flexible choice modeling approach for complex system design. The hierarchical choice modeling framework utilizes multiple model levels corresponding to the complex system hierarchy to create a link between qualitative attributes considered by consumers when selecting a product and quantitative attributes used for engineering design. To capture heterogeneous and stochastic consumer preferences, the mixed logit choice model is used to predict consumer system-level choices, and the random-effects ordered logit model is used to model consumer evaluations of system and subsystem level design features. In the proposed approach, both systematic and random consumer heterogeneity are explicitly considered, the ability to combine multiple sources of data for model estimation and updating is provided using the Bayesian estimation methodology, and an integrated estimation procedure is introduced to mitigate error propagated throughout the model hierarchy. The new modeling approach is validated using several metrics and validation techniques for behavior models. The benefits of the IBHCM method are demonstrated in the design of an automobile occupant package.

1.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
411
418
.
2.
Cook
,
H. E.
, 1997,
Product Management: Value, Quality, Cost, Price, Profit and Organization
,
Chapman and Hall
,
London, UK
.
3.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading
,”
J. Prod. Innovation Manage.
0737-6782,
22
(
1
), pp.
42
62
.
4.
Michalek
,
J. J.
, 2005, “
Preference Coordination in Engineering Design Decision-Making
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
5.
Wassenaar
,
H. J.
, and
Chen
,
W.
, 2003, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
490
497
.
6.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
, 2005, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
514
523
.
7.
Besharati
,
B.
,
Luo
,
L.
,
Azarm
,
S.
, and
Kannan
,
P. K.
, 2006, “
Multi-Objective Single Product Robust Optimization: An Integrated Design and Marketing Approach
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
884
892
.
8.
Heese
,
H. S.
, and
Swaminathan
,
J. M.
, 2006, “
Product Line Design With Component Commonality and Cost-Reduction Effort
,”
Manuf. Serv. Oper. Manage.
1523-4614,
8
(
2
), pp.
206
219
.
9.
Luo
,
L.
, “
Product Line Design for Consumer Durables: An Integrated Marketing and Engineering Approach
,”
J. Mark. Res.
0022-2437 (to be published).
10.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
, 2006, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
ASME J. Mech. Des.
0161-8458,
128
(
6
), pp.
1196
1204
.
11.
Michalek
,
J. J.
,
Ebbes
,
P.
,
Adiguzel
,
F.
,
Feinberg
,
F.
, and
Papalambros
,
P. Y.
, “
Enhancing Marketing With Engineering: Optimal Product Line Design for Heterogeneous Markets
,” Working Paper.
12.
MacDonald
,
E. F.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
, 2009, “
Preference Inconsistency in Multidisciplinary Design Decision Making
,”
ASME J. Mech. Des.
0161-8458,
131
(
3
), p.
031009
.
13.
Shiau
,
C.
, and
Michalek
,
J.
, 2009, “
Optimal Product Design Under Price Competition
,”
ASME J. Mech. Des.
0161-8458,
131
(
7
), p.
071003
.
14.
Orsborn
,
S.
,
Cagan
,
J.
, and
Boatwright
,
P.
, 2009, “
Quantifying Aesthetic Form Preference in a Utility Function
,”
ASME J. Mech. Des.
0161-8458,
131
(
6
), p.
061001
.
15.
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
, and
Gomez-Levi
,
G.
, 2009, “
Understanding Heterogeneity of Human Preferences for Engineering Design
,”
International Conference on Engineering Design, ICED’09
, Stanford, CA, Aug. 24–27.
16.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
, 2004, “
An Integrated Latent Variable Choice Modeling Approach to Enhancing Product Demand Modeling
,”
Proceedings of the 2004 ASME DETC/CIE
, Salt Lake City, UT.
17.
Allenby
,
G.
,
Fennell
,
G.
,
Huber
,
J.
,
Eagle
,
T.
,
Gilbride
,
T.
,
Horsky
,
D.
,
Kim
,
J.
,
Lenk
,
P.
,
Johnson
,
R.
,
Ofek
,
E.
, 2005, “
Adjusting Choice Models to Better Predict Market Behavior
,”
Marketing Letters
,
16
(
3–4
), pp.
197
208
.
18.
Louviere
,
J. J.
,
Hensher
,
D. A.
, and
Swait
,
J. D.
, 2000,
Stated Choice Methods: Analysis and Application
,
Cambridge University Press
,
New York
.
19.
Kumar
,
D.
,
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
,
Gomez-Levi
,
G.
, and
Koppelman
,
F.
, 2009, “
A Hierarchical Choice Modelling Approach for Incorporating Customer Preferences in Vehicle Package Design
,”
International Journal of Product Development
,
8
(
3
), pp.
228
251
.
20.
Hoyle
,
C.
,
Chen
,
W.
,
Ankenman
,
B.
, and
Wang
,
N.
, 2009, “
Optimal Experimental Design of Human Appraisals for Modeling Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
131
(
7
), p.
071008
.
21.
Parkinson
,
M. P.
, and
Reed
,
M. P.
, 2006, “
Optimizing Vehicle Occupant Packaging
,”
SAE World Congress
, Detroit, MI, Apr. 3–6.
22.
Noui-Mehidi
,
A.
, 1997, “
Applying Constraints to Vehicle Packaging
,” Customer Papers, ILOG Corporation.
23.
Hamza
,
K.
,
Hossoy
,
I.
,
Reyes-Luna
,
J. F.
, and
Papalambros
,
P. Y.
, 2004, “
Combined Maximisation of Interior Comfort and Frontal Crashworthiness in Preliminary Vehicle Design
,”
Int. J. Veh. Des.
0143-3369,
35
(
3
), pp.
167
185
.
24.
de Weck
,
O. L.
, and
Suh
,
E. S.
, 2006, “
Flexible Product Platforms: Framework and Case Study
,”
Proceedings of the 2006 ASME IDETC Conference
, Philadelphia, PA.
25.
Society of Automotive Engineers
, 2002, “
Surface Vehicle Recommended Practice—Motor Vehicle Dimensions
,” SAE J1100, SAE International, Warrendale, PA.
26.
Train
,
K. E.
, 2003,
Discrete Choice Methods With Simulation
,
Cambridge University Press
,
Cambridge, UK
.
27.
Rossi
,
P. E.
,
Allenby
,
G. M.
, and
McCulloch
,
R.
, 2005,
Bayesian Statistics and Marketing
,
Wiley
,
Hoboken, NJ
.
28.
Hedeker
,
D.
, and
Gibbons
,
R. D.
, 1994, “
A Random-Effects Ordinal Regression Model for Multilevel Analysis
,”
Biometrics
0006-341X,
50
(
4
), pp.
933
944
.
29.
Bhat
,
C. R.
, 2000, “
Incorporating Observed and Unobserved Heterogeneity in Urban Work Travel Mode Choice Modeling
,”
Transportation Science
,
34
(
2
), pp.
228
238
.
30.
Rossi
,
P. E.
, and
Allenby
,
G. M.
, 2003, “
Bayesian Statistics and Marketing
,”
Mark. Sci. (Providence R.I.)
0732-2399,
22
(
3
), pp.
304
328
.
31.
Neelamegham
,
R.
, and
Chintagunta
,
P.
, 1999, “
A Bayesian Model to Forecast New Product Performance in Domestic and International Markets
,”
Mark. Sci. (Providence R.I.)
0732-2399,
18
(
2
), pp.
115
136
.
32.
Erdem
,
T.
, and
Keane
,
M. P.
, 1996, “
Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets
,”
Mark. Sci. (Providence R.I.)
0732-2399,
15
(
1
), pp.
1
20
.
33.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
, 2004,
Bayesian Data Analysis
,
Chapman and Hall
,
London, UK
/
CRC
,
Boca Raton, FL
.
34.
Lancaster
,
T.
, 2004,
An Introduction to Modern Bayesian Econometrics
,
Blackwell
,
Oxford, UK
.
35.
Hoyle
,
C.
, and
Chen
,
W.
, 2009, “
Product Attribute Function Deployment (PAFD) for Decision-Based Conceptual Design
,”
IEEE Trans. Eng. Manage.
0018-9391,
56
(
2
), pp.
271
284
.
36.
Johnson
,
V. E.
, and
Albert
,
J. H.
, 1999,
Ordinal Data Modeling
,
Springer
,
New York
.
37.
Wang
,
N.
,
Kiridena
,
V.
,
Gomez-Levi
,
G.
, and
Wan
,
J.
, 2006, “
Design and Verification of a New Computer Controlled Seating Buck
,”
Proceedings of the 2006 ASME IDETC/CIE
, Philadelphia, PA.
38.
Tamhane
,
A. C.
, and
Dunlop
,
D. D.
, 2000,
Statistics and Data Analysis: From Elementary to Intermediate
,
Prentice Hall
,
Upper Saddle River, NJ
.
39.
Spiegelhalter
,
D. J.
,
Thomas
,
A.
,
Best
,
N. G.
, and
Lunn
,
D.
, 2003, WINBUGS Version 1.4, MRC Biostatistics Unit, Cambridge, UK.
40.
Ihaka
,
R.
, and
Gentleman
,
R.
, 1996, “
R: A Language for Data Analysis and Graphics
,”
J. Comput. Graph. Stat.
1061-8600,
5
, pp.
299
314
.
41.
Ben-Akiva
,
M.
, and
Lerman
,
S. R.
, 1985,
Discrete Choice Analysis
,
MIT
,
Cambridge, MA
.
42.
Edmunds Inc.
, 2007, www.edmunds.comwww.edmunds.com
43.
Kumar
,
D.
, 2007, “
Demand Modeling for Enterprise-Driven Product Design
,” Ph.D. thesis, Northwestern University, Evanston, IL.
You do not currently have access to this content.