This paper presents a new method in designing the core layer of adaptive sandwich structures. The proposed design formulation treats the core layer as a compliant unit cell network while the unit cell network is synthesized by repeatedly linked identical compliant unit cells. Each unit cell is designed to possess shape adaptive functions independently and through the accumulation of the number of cells within the network, the global adaptive functions are accumulated also. Therefore, the network is capable of achieving large scale shape adaptations of complex profile with high fidelity. Topology optimization is used to design the compliant unit cell. Depending on the problem formulation, topology optimization can perform the simultaneous design of both the host material and the actuation material in the defined environment. This research includes a numerical case study to illustrate the technical aspects of this design philosophy. This is followed by the rapid prototyping of two scaled models and experimental validation.

1.
Vinson
,
J. R.
, 1999,
The Behavior of Sandwich Structures of Isotropic and Composite Materials
,
Technomic Publishing Company, Inc.
,
Lancaster, PA
.
2.
Zhang
,
X. D.
, and
Sun
,
C. T.
, 1996, “
Formulation of an Adaptive Sandwich Beam
,”
Smart Mater. Struct.
0964-1726,
5
, pp.
814
823
.
3.
Benjeddou
,
A.
,
Trindade
,
M. A.
, and
Ohayon
,
R.
, 2000, “
Piezoelectric Actuation Mechanisms for Intelligent Sandwich Structures
,”
Smart Mater. Struct.
0964-1726,
9
, pp.
328
335
.
4.
Baillargeon
,
B. P.
, and
Vel
,
S. S.
, 2005, “
Active Vibration Suppression of Sandwich Beams using Piezoelectric Shear Actuators: Experiments and Numerical Simulations
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
(
5
), pp.
517
530
.
5.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.
6.
Howell
,
L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
7.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
, 1996, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
118
(
1
), pp.
126
131
.
8.
Ananthasuresh
,
G.
,
Kota
,
S.
, and
Gianchandani
,
Y.
, 1994, “
A Methodical Approach to the Design of Compliant Micro-Mechanisms
,”
Solid-State Sensor and Actuator Workshop
.
9.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
(
4
), pp.
493
524
.
10.
Wang
,
M.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
, 2005, “
Design of Multimaterial Compliant Mechanisms Using Level Set Methods
,”
J. Mech. Des.
1050-0472,
127
(
5
), pp.
941
956
.
11.
Luo
,
Z.
,
Tong
,
L.
,
Wang
,
M. Y.
, and
Wang
,
S. Y.
, 2007, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
0021-9991,
227
(
1
), pp.
680
705
.
12.
Frecker
,
M.
,
Ananthasuresh
,
G.
,
Nishiwaki
,
S.
, and
Kikuchi
,
N.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
J. Mech. Des.
1050-0472,
119
(
2
), pp.
238
245
.
13.
Lin
,
J.
,
Luo
,
Z.
, and
Tong
,
L.
, 2010, “
A New Multi-Objective Programming Scheme for Topology Optimization of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
40
(
1-6
), pp.
241
255
.
14.
Rozvany
,
G. I. N.
, 2001, “
Aim, Scope, Methods, History, and Unified Terminology of Computer Aided Topology Optimization in Structural Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
2
), pp.
90
108
.
15.
Frecker
,
M. I.
, 2003, “
Recent Advances in Optimization of Smart Structures and Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
, pp.
207
216
.
16.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm Part II: Topological, Geometry, and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, pp.
309
336
.
17.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 1999, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
0939-1533,
69
, pp.
635
654
.
18.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
(
2
), pp.
359
373
.
19.
Sigmund
,
O.
, and
Torquato
,
S.
, 1999, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
0964-1726,
8
(
3
), pp.
365
379
.
20.
Canfield
,
S.
, and
Frecker
,
M.
, 2000, “
Topology Optimization of Compliant Mechanical Amplifiers for Piezoelectric Actuators
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
4
), pp.
269
279
.
21.
Du
,
H.
,
Lau
,
G. K.
,
Lim
,
M. K.
, and
Qui
,
J.
, 2000, “
Topological Optimization of Mechanical Amplifiers for Piezoelectric Actuators Under Dynamic Motion
,”
Smart Mater. Struct.
0964-1726,
9
(
6
), pp.
788
800
.
22.
Silva
,
E. C. N.
, 2003, “
Topology Optimization Applied to the Design of Linear Piezoelectric Motors
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
4–5
), pp.
309
322
.
23.
Sadri
,
A. M.
,
Wright
,
J. R.
, and
Wynne
,
R. J.
, 1999, “
Modelling and Optimal Placement of Piezoelectric Actuators in Isotropic Plates Using Genetic Algorithms
,”
Smart Mater. Struct.
0964-1726,
8
(
4
), pp.
490
498
.
24.
Jha
,
A. K.
, and
Inman
,
D. J.
, 2003, “
Optimal Sizes and Placements of Piezoelectric Actuators and Sensors for an Inflated Torus
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
9
), pp.
563
576
.
25.
Sun
,
D.
, and
Tong
,
L.
, 2005, “
Design Optimization of Piezoelectric Actuator Patterns for Static Shape Control of Smart Plates
,”
Smart Mater. Struct.
0964-1726,
14
(
6
), pp.
1353
1362
.
26.
Rader
,
A. A.
,
Afagh
,
F. F.
,
Yousefi-Koma
,
A.
, and
Zimcik
,
D. G.
, 2007, “
Optimization of Piezoelectric Actuator Configuration on a Flexible Fin for Vibration Control Using Genetic Algorithms
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
18
(
10
), pp.
1015
1033
.
27.
Swan
,
C. C.
, and
Kosaka
,
I.
, 1997, “
Voigt-Reuss Topology Optimization for Structures With Linear Elastic Material Behaviours
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
3033
3057
.
28.
Sigmund
,
O.
, and
Clausen
,
P. M.
, 2006, “
Topology Optimization Using a Mixed Formulation: An Alternative Way to Solve Pressure Load Problems Computer Methods
,”
Appl. Mech. Eng.
1425-1655,
196
(
13–16
), pp.
1874
1889
.
29.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
6605
6627
.
30.
Saxena
,
A.
, 2005, “
Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
6
), pp.
477
490
.
31.
Carbonari
,
R. C.
,
Silva
,
E. C. N.
, and
Nishiwaki
,
S.
, 2007, “
Optimum Placement of Piezoelectric Material in Piezoactuator Design
,”
Smart Mater. Struct.
0964-1726,
16
(
1
), pp.
207
220
.
32.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1963, “
A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
0022-5096,
11
(
2
), pp.
127
140
.
33.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimal Property of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
1
), pp.
36
49
.
34.
Luo
,
Z.
,
Chen
,
L.
,
Yang
,
J.
,
Zhang
,
Y.
, and
Abdel-Malek
,
K.
, 2005, “
Compliant Mechanism Design Using Multi-Objective Topology Optimization Scheme of Continuum Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
2
), pp.
142
154
.
35.
Messac
,
A.
, 1996, “
Physical Programming: Effective Optimization for Computation Design
,”
AIAA J.
0001-1452,
34
(
1
), pp.
149
158
.
36.
Luo
,
Z.
,
Tong
,
L.
, and
Ma
,
H.
, 2009, “
Shape and Topology Optimization for Electrothermomechanical Microactuators Using Level Set Methods
,”
J. Comput. Phys.
0021-9991,
228
(
9
), pp.
3173
3181
.
You do not currently have access to this content.