Solar reactors can convert intermittent solar radiation into storable chemical energy in the form of fuels that are transportable. In order to use solar energy as a source of high temperature process heat in a solar reactor, incident radiation needs to be concentrated over a small surface area, the inlet of which is called the aperture. The image of the incoming solar radiation over the aperture can be approximated by a Gaussian distribution where the solar radiation inside the reactor varies by the peak value and aperture size. Due to the transient nature of solar energy, there is a critical need for proper control to maximize system efficiency under field conditions. The objective of this paper is to present numerically proven advantages of having a camera-like variable aperture, one that is sensitive to natural variations in solar flux, and having the ability to shrink or enlarge accordingly in order to maintain quasi-constant radiation inside the reactor. Since the internal temperature has a major impact on reactant to product conversion efficiency, by maintaining the temperature constant, process efficiency is kept high. By maintaining the internal temperature despite transient operating conditions, the system can maintain peak performance through a wider insolation range than fixed aperture systems. Our numerical results from optical, thermodynamic, and flow dynamic simulations led us to develop a computational two dimensional heat transfer distribution model inside the reactor in order to validate our optical results. The combined simulation results show that correctly varying the aperture diameter with respect to transient incoming solar flux densities facilitates the maintenance of quasi-constant temperature distributions inside the reactor.

1.
Abanades
,
S.
,
Charvin
,
P.
, and
Flamant
,
G.
, 2007, “
Design and Simulation of a Solar Chemical Reactor for the Thermal Reduction of Metal Oxides: Case Study of Zinc Oxide Dissociation
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
6323
6333
.
2.
Abanades
,
S.
, and
Flamant
,
G.
, 2007, “
Experimental Study and Modeling of a High-Temperature Solar Chemical Reactor for Hydrogen Production From Methane Cracking
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
1508
1515
.
3.
Charvin
,
P.
,
Abanades
,
S.
,
Neveu
,
P.
,
Lemont
,
F.
, and
Flamant
,
G.
, 2008, “
Dynamic Modeling of a Volumetric Solar Reactor for Volatile Metal Oxide Reduction
,”
Chem. Eng. Res. Des.
0263-8762,
86
, pp.
1216
1222
.
4.
Kogan
,
A.
, and
Kogan
,
B.
, 2003, “
Production of Hydrogen and Carbon by Solar Thermal Methane Splitting. I. The Unseeded Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
1187
1198
.
5.
Ozalp
,
N.
,
Kogan
,
A.
, and
Epstein
,
M.
, 2009, “
Solar Decomposition of Fossil Fuels as an Option for Sustainability
,”
Int. J. Hydrogen Energy
0360-3199,
34
, pp.
710
720
.
6.
Steinfeld
,
A.
, and
Palumbo
,
R.
, 2001, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science & Technology
, Vol.
15
,
Academic Press
,
New York
, pp.
237
256
.
7.
Palumbo
,
R.
,
Keunecke
,
M.
,
Moller
,
S.
, and
Steinfeld
,
A.
, 2004, “
Reflections on the Design of Solar Thermal Chemical Reactors: Thoughts in Transformation
,”
Energy
0360-5442,
29
, pp.
727
744
.
8.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
, pp.
603
615
.
9.
Wyss
,
J.
,
Martinek
,
J.
,
Kerins
,
M.
,
Dahl
,
J.
,
Weimer
,
A.
,
Lewandowski
,
A.
, and
Bingham
,
C.
, 2007, “
Rapid Solar-Thermal Decarbonization of Methane in a Fluid-Wall Aerosol Flow Reactor–Fundamentals and Application
,”
International Journal of Chemical Reactor Engineering
,
5
, p.
A69
.
10.
Ozalp
,
N.
, 2008, “
Energy and Material Flow Models of Hydrogen Production in the U.S. Chemical Industry
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
5020
5034
.
11.
Steinfeld
,
A.
, and
Schubnell
,
M.
, 1993, “
Optimum Aperture Size and Temperature of a Solar Cavity-Receiver
,”
Sol. Energy
0038-092X,
50
(
1
), pp.
19
25
.
12.
Bertocchi
,
R.
,
Karni
,
J.
, and
Kribus
,
A.
, 2004, “
Experimental Evaluation of a Non-Isothermal High Temperature Solar Particle Receiver
,”
Energy
0360-5442,
29
, pp.
687
700
.
13.
Fletcher
,
A.
, and
Steinfeld
,
A.
, 1987, “
A Solar Receiver-Reactor With Specularly Reflecting Walls for High-Temperature Thermoelectrochemical and Thermochemical Processes
,”
Energy
0360-5442,
13
(
4
), pp.
301
311
.
14.
Shuai
,
Y.
,
Xia
,
X. -L.
, and
Tan
,
H. -P.
, 2008, “
Radiation Performance of Dish Solar Concentrator/Cavity Receiver Systems
,”
Sol. Energy
0038-092X,
82
, pp.
13
21
.
15.
Lipiński
,
A.
, and
Steinfeld
,
A.
, 2006, “
Annular Compound Parabolic Concentrator
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
121
124
.
16.
Collado
,
F.
,
Gomez
,
A.
, and
Turegano
,
J.
, 1986, “
An Analytic Function for the Flux Density due to Sunlight Reflected From a Heliostat
,”
Sol. Energy
0038-092X,
37
(
3
), pp.
215
234
.
17.
Daly
,
J.
, 1979, “
Solar Concentrator Flux Distributions Using Backward Ray Tracing
,”
Appl. Opt.
0003-6935,
18
(
15
), pp.
2696
2700
.
18.
Hong
,
C.
, and
Lee
,
C.
, 1987, “
Radiation Flux Distribution Over Solar Images Formed on the Focal Plane by a Paraboloidal Reflector With Tracking Errors
,”
Korean J. Chem. Eng.
0256-1115,
4
(
1
), pp.
73
78
.
19.
Ulmer
,
S.
,
Reinalter
,
W.
,
Heller
,
P.
,
Lupfert
,
E.
, and
Martinez
,
D.
, 2002, “
Beam Characterization and Improvement With a Flux Mapping System for Dish Concentrators
,”
Trans. ASME
0097-6822,
124
, p.
182
188
.
20.
Jubb
,
A.
, 1980, “
Solar Heat Aperture Control Apparatus
,” U.S. Patent No. 4,222,367.
21.
Spurling
,
J. E.
, 1963, “
Variable Orifice
,” U.S. Patent No. 3,106,225.
22.
Mann
,
H.
, 1964, “
Iris Diaphragm
,” U.S. Patent No. 3,132,576.
23.
Beeman
,
R.
, 1978, “
Variable Orifice Using an Iris Shutter
,” U.S. Patent No. 4,094,492.
24.
Hirsch
,
D.
, and
Steinfeld
,
A.
, 2004, “
Solar Hydrogen Production by Thermal Decomposition of Natural Gas Using a Vortex-Flow Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
47
55
.
25.
Goswami
,
Y.
, 2000,
Principles of Solar Engineering
, 2nd ed.,
CRC
,
Boca Raton, FL
.
26.
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Siegel
,
N. P.
, 2009, “
Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Storage
,”
Proceedings of ES2009 Energy Sustainability
, San Francisco, Jul. 19–23, Paper No. ES2009-90035.
27.
Rao
,
S. S.
, and
Hu
,
Y.
, 2010, “
Multi-Objective Optimal Design of Stationary Flat-Plate Solar Collectors Under Probabilistic Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
132
, p.
094501
.
You do not currently have access to this content.