This paper examines how the span angle design of its tooth profile affects the motion and pumping performance of a gerotor pump whose outer rotor profile is formed by an epicycloid and hypocycloid and whose inner rotor profile is obtainable by the theory of gearing. When the outer rotors have the same volume, the sealing performance of the rotor profile can be assessed using the curvature difference method, which indicates that sealing remains the same across various span angle designs. The tooth profile is built using mathematical models of the rotor, and fluid and dynamics analyses are conducted to predict actual pump operation. The overall fluid analysis, which models both compressibility and cavitation, clearly illustrates the complexity of the fluid flow inside the pump. Comparisons of the results for three separate span angle designs then reveal that the larger the span angle, the higher the area efficiency, outlet pressure, outlet flow rate, outlet flow velocity, and gas volume. A subsequent dynamics analysis further suggests that different span angle designs may lead to diverse contact force distribution on the inner and outer rotors. Hence, the research results provide useful guidelines for rotor design.

References

1.
Tsay
,
C. B.
, and
Yu
,
C. Y.
,
1990
, “
Mathematical Model of Gerotor Pump Applicable to its Characteristic Study
,”
Trans Chin Inst. Engineers, Series C
,
11
(
4
), pp.
385
391
.
2.
Beard
,
J. E.
,
Hall
,
A. S.
, and
Soedel
,
W.
,
1991
, “
Comparison of Hypotrochoidal and Epitrochoidal Gerotors
,”
Trans. ASME J. Mech. Des.
,
113
, pp.
133
141
.10.1115/1.2912761
3.
Beard
,
J. E.
,
Yannitell
,
D. W.
, and
Pennock
,
G. R.
,
1992
, “
The Effect of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors
,”
Mech. Mach. Theory
,
27
(
4
), pp.
373
389
.10.1016/0094-114X(92)90030-L
4.
Shung
,
J. B.
, and
Pennock
,
G. R.
,
1994
, “
Geometry for Trochoidal-Type Machines With Conjugate Envelopes
,”
Mech. Mach. Theory
,
29
(
1
), pp.
25
42
.10.1016/0094-114X(94)90017-5
5.
Litvin
,
F. L.
, and
Feng
,
P. H.
,
1996
, “
Computerized Design and Generation of Cycloidal Gearings
,”
Mech. Mach. Theory
,
31
(
7
), pp.
891
911
.10.1016/0094-114X(95)00115-F
6.
Vecchiato
,
D.
,
Demenego
,
A.
,
Argyris
,
J.
, and
Litvin
,
F. L.
,
2001
, “
Geometry of a Cycloidal Pump
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
2309
2330
.10.1016/S0045-7825(00)00236-X
7.
Litvin
,
F. L.
,
Demenego
,
A.
, and
Vecchiato
,
D.
,
2001
, “
Formation by Branches of Envelope to Parametric Families of Surfaces and Curves
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
4587
4608
.10.1016/S0045-7825(00)00334-0
8.
Demenego
,
A.
,
Vecchiato
,
D.
,
Litvin
,
F. L.
,
Nervegna
,
N.
, and
Manco
,
S.
,
2002
, “
Design and Simulation of Meshing of a Cycloidal Pump
,”
Mech. Mach. Theory
,
37
(
3
), pp.
311
332
.10.1016/S0094-114X(01)00074-X
9.
Paffoni
,
B.
,
2003
, “
Pressure and Film Thickness in a Trochoidal Hydrostatic Gear Pump
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
217
(
4
), pp.
179
187
.10.1243/095441003769700744
10.
Paffoni
,
B.
,
Progri
,
R.
, and
Gras
R.
,
2004
, “
Teeth Clearance Effects Upon Pressure and Film Thickness in a Trochoidal Hydrostatic Gear Pump
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
218
(
4
), pp.
247
256
.10.1243/0954410041872799
11.
Hsieh
,
C. F.
, and
Hwang
,
Y. W.
,
2007
, “
Geometric Design for a Gerotor Pump With High Area Efficiency
,”
Trans. ASME J. Mech. Des.
,
129
, pp.
1269
1277
.10.1115/1.2779887
12.
Hsieh
,
C. F.
,
2009
, “
Influence of Gerotor Performance in Varied Geometrical Design Parameters
,”
Trans. ASME J. Mech. Des.
,
131
(
12
), p.
121008
.10.1115/1.4000484
13.
Yan
,
J.
,
Yang
,
D. C. H.
, and
Tong
,
S. H.
,
2009
, “
A New Gerotor Design Method With Switch Angle Assignability
,”
Trans. ASME J. Mech. Des.
,
131
(
1
), p.
011006
.10.1115/1.3013442
14.
Tong
,
S. H.
,
Yan
,
J.
, and
Yang
,
D. C. H.
,
2009
, “
Design of Deviation-Function Based Gerotors
,”
Mech. Mach. Theory
,
44
(
8
), pp.
1595
1606
.10.1016/j.mechmachtheory.2009.01.001
15.
Yang
,
D. C. H.
,
Yan
,
J.
, and
Tong
,
S. H.
,
2010
, “
Flowrate Formulation of Deviation Function Based Gerotor Pumps
,”
Trans. ASME J. Mech. Des.
,
132
(
6
), p.
064503
.10.1115/1.4001595
16.
Gamez-Montero
P. J.
,
Castilla
R.
,
Khamashta
M.
, and
Codina
E.
,
2006
, “
Contact Problems of a Trochoidal-Gear Pump
,”
Int. J. Mech. Sci.
,
48
(
12
), pp.
1471
1480
.10.1016/j.ijmecsci.2006.06.013
17.
Gamez-Montero
,
P. J.
, and
Codina
E.
,
2003
, “
Contact Stress in a Gerotor Pump
,”
ASME International Mechanical Engineering Congress and Exposition, November 15–21, Washington, DC, pp.
65
71
.
18.
Gamez-Montero
,
P. J.
,
Castilla
,
R.
,
Mujal
,
R.
,
Khamashta
,
M.
, and
Codina
,
E.
,
2009
, “
GEROLAB Package System: Innovative Tool to Design a Trochoidal-Gear Pump
,”
Trans. ASME J. Mech. Des.
,
131
(
7
), p.
074502
.10.1115/1.3125889
19.
Gamez-Montero
,
P. J.
,
Garcia-Vilchez
,
M.
,
Raush
,
G.
,
Freire
,
J.
, and
Codina
,
E.
,
2012
, “
Teeth Clearance and Relief Grooves Effects in a Trochoidal-Gear Pump Using New Modules of GeroLAB
,”
Trans. ASME J. Mech. Des.
,
13
4
(
5
), p.
054502
.10.1115/1.4006440
20.
Ivanović
,
L.
,
Devedžić
,
G.
,
Ćuković
,
S.
, and
Mirić
,
N.
,
2012
, “
Modeling of the Meshing of Trochoidal Profiles With Clearances
,”
Trans. ASME J. Mech. Des.
,
134
(
4
), p.
041003
.10.1115/1.4005621
21.
Choi
,
T. H.
,
Kim
,
M. S.
,
Lee
,
G. S.
,
Jung
,
S. Y.
,
Bae
,
J. H.
, and
Kim
,
C.
,
2012
, “
Design of Rotor for Internal Gear Pump Using Cycloid and Circular-Arc Curves
,”
Trans. ASME J. Mech. Des.
,
134
(
1
), p.
011005
.10.1115/1.4004423
22.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME Trans. J. Fluids Eng.
,
133
, p.
011101
.10.1115/1.4003196
23.
Litvin
,
F. L.
,
1994
,
Gear Geometry and Applied Theory
,
Prentice Hall
,
New York
.
You do not currently have access to this content.