Disassembly sequence planning at the early conceptual stage of design leads to enormous benefits including simplification of products, lower assembly and disassembly costs, and design modifications which result in increased potential profitability of end-of-life salvaging operations. However, in the early design stage, determining the best disassembly sequence is challenging. First, the required information is not readily available and very time-consuming to gather. In addition, the best solution is sometimes counterintuitive, even to those with experience and expertise in disassembly procedures. Integrating analytical models with immersive computing technology (ICT) can help designers overcome these issues. A two-stage procedure for doing so is introduced in this paper. In the first stage, a stochastic programming model together with the information obtained through immersive simulation is applied to determine the optimal disassembly sequence, while considering uncertain outcomes, such as time, cost, and the probability of causing damage. In the second stage, ICT is applied as a tool to explore alternative disassembly sequence solutions in an intuitive way. The benefit of using this procedure is to determine the best disassembly sequence, not only by solving the analytic model but also by capturing human expertise. The designer can apply the obtained results from these two stages to analyze and modify the product design. An example of a Burr puzzle is used to illustrate the application of the method.

References

1.
Lambert
,
A. J. D.
,
2003
, “
Disassembly Sequencing: A Survey
,”
Int. J. Prod. Res.
,
41
(
16
), pp.
3721
3759
.10.1080/0020754031000120078
2.
O'Shea
,
B.
,
Grewal
,
S. S.
, and
Kaebernick
,
H.
,
1998
, “
State of the Art Literature Survey on Disassembly Planning
,”
Concurrent Eng.: Res. Appl.
,
6
(
4
), pp.
345
357
.10.1177/1063293X9800600407
3.
Ying
,
T.
,
MengChu
,
Z.
,
Zussman
,
E.
, and
Caudill
,
R.
,
2002
, “
Disassembly Modeling, Planning, and Application
,”
J. Manuf. Syst.
,
21
(
3
), pp.
200
217
.10.1016/S0278-6125(02)80162-5
4.
Dong
,
J.
, and
Arndt
,
G.
,
2003
, “
A Review of Current Research on Disassembly Sequence Generation and Computer Aided Design for Disassembly
,”
Proc. Inst. Mech. Eng., Part B (J. Eng. Manuf.)
,
217
(
B3
), pp.
299
312
.10.1243/095440503321590479
5.
Kang
,
J.-G.
, and
Xirouchakis
,
P.
,
2006
, “
Disassembly Sequencing for Maintenance: A Survey
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
220
(
10
), pp.
1697
1716
.10.1243/09544054JEM596
6.
Reveliotis
,
S. A.
,
2007
, “
Uncertainty Management in Optimal Disassembly Planning Through Learning-Based Strategies
,”
IIE Trans.
,
39
(
6
), pp.
645
658
.10.1080/07408170600897536
7.
Behdad
,
S.
, and
Thurston
,
D.
,
2012
, “
Disassembly and Reassembly Sequence Planning Tradeoffs Under Uncertainty for Product Maintenance
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041011
.10.1115/1.4006262
8.
Zussman
,
E.
, and
Meng Chu
,
Z.
,
2000
, “
Design and Implementation of an Adaptive Process Planner for Disassembly Processes
,”
IEEE Trans. Rob. Autom.
,
16
(
2
), pp.
171
179
.10.1109/70.843173
9.
Zuidwijk
,
R.
, and
Krikke
,
H.
,
2001
, “
Disassembly for Recovery Under Uncertainty
,”
Proceedings of Environmentally Conscious Manufacturing II
, Oct. 28–29, SPIE-International Society for Optics and Eng, pp.
44
53
.
10.
Gupta
,
S. M.
, and
Kongar
,
E.
,
2006
, “
Disassembly to Order System Under Uncertainty
,”
Omega
,
34
(
6
), pp.
550
561
.10.1016/j.omega.2005.01.006
11.
Ying
,
T.
, and
Turowski
,
M.
,
2007
, “
Adaptive Fuzzy System for Disassembly Process Planning With Uncertainty
,”
J. Chin. Inst. Ind. Eng.
,
24
(
1
), pp.
20
29
.
12.
Tripathi
,
M.
,
Agrawal
,
S.
,
Pandey
,
M. K.
,
Shankar
,
R.
, and
Tiwari
,
M. K.
,
2009
, “
Real World Disassembly Modeling and Sequencing Problem: Optimization by Algorithm of Self-Guided Ants (ASGA)
,”
Rob. Comput.-Integr. Manuf.
,
25
(
3
), pp.
483
496
.10.1016/j.rcim.2008.02.004
13.
Xanthopoulos
,
A.
, and
Iakovou
,
E.
,
2009
, “
On the Optimal Design of the Disassembly and Recovery Processes
,”
Waste Manage.
,
29
(
5
), pp.
1702
1711
.10.1016/j.wasman.2008.11.009
14.
Behdad
,
S.
,
Williams
,
A. S.
, and
Thurston
,
D.
,
2012
, “
End-of-Life Decision Making With Uncertain Product Return Quantity
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100902
.10.1115/1.4007394
15.
Ruijun
,
L.
,
Guangdong
,
T.
,
Xueyi
,
Z.
,
Anyan
,
Z.
,
Xiaolan
,
W.
, and
Qingning
,
N.
,
2011
, “
Disassembly Sequence Optimization for Automotive Product Based on Probabilistic Planning Method
,”
Proceedings of 2011 International Conference on Consumer Electronics, Communications and Networks
, CECNet 2011, Apr. 16–18, IEEE Computer Society, pp.
284
288
.
16.
Erdos
,
G.
,
Kis
,
T.
, and
Xirouchakis
,
P.
,
2001
, “
Modelling and Evaluating Product End-of-Life Options
,”
Int. J. Prod. Res.
,
39
(
6
), pp.
1203
1220
.10.1080/713845985
17.
Lambert
,
A. J. D.
,
2002
, “
Determining Optimum Disassembly Sequences in Electronic Equipment
,”
Comput. Ind. Eng.
,
43
(
3
), pp.
553
575
.10.1016/S0360-8352(02)00125-0
18.
Kelsick
,
J.
,
Vance
,
J. M.
,
Buhr
,
L.
, and
Moller
,
C.
,
2003
, “
Discrete Event Simulation Implemented in a Virtual Environment
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
428
433
.10.1115/1.1587745
19.
Box
,
G. E.
, and
Cox
,
D. R.
,
1964
,
An Analysis of Transformations
, Journal of the Royal Statistical Society. Series B (Methodological), Royal Statistical Society, Wiley, New York. Available at: http://www.jstor.org/stable/2984418
20.
Alexander Shapiro
,
D. D.
, and
Andrzej Ruszczyński
,
2009
, “
Lectures on Stochastic Programming: Modeling and Theory
,”
Society for Industrial and Applied Mathematics
,
P.
Toint
, ed.,
Philadelphia, PA
.
21.
Burr Puzzle,
2013
. Available at: http://en.wikipedia.org/wiki/Burr_puzzle
22.
Behdad
,
S.
,
Kwak
,
M.
,
Kim
,
H.
, and
Thurston
,
D.
, 2010, “
Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations
,”
Am. Soc. Mech. Eng.
,
132
(4), p.
041002
.10.1115/1.4001207
23.
Lambert
,
A. J. D.
,
1999
, “
Linear Programming in Disassembly/Clustering Sequence Generation
,”
Comput. Ind. Eng.
,
36
(
4
), pp.
723
738
.10.1016/S0360-8352(99)00162-X
You do not currently have access to this content.