This paper presents an optimization method for solving level set-based topology optimization problems. A predictor–corrector scheme for constructing the velocity field is developed. In this method, after the velocity fields in the first two iterations are calculated using the shape sensitivity analysis, the subsequent velocity fields are constructed based on those obtained from the first two iterations. To ensure stability, the velocity field is renewed based on the shape sensitivity analysis after a certain number of iterations. The validity of the proposed method is tested on the mean compliance minimization problem and the compliant mechanisms synthesis problem. This method is quantitatively compared with other methods, such as the standard level set method, the solid isotropic microstructure with penalization (SIMP) method, and the discrete level set method.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.10.1016/0045-7825(88)90086-2
2.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
New York
.
3.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.: Int. J.
,
25
(
4
), pp.
493
524
.10.1080/08905459708945415
4.
Zhu
,
B.
,
Zhang
,
X.
,
Wang
,
N.
, and
Fatikow
,
S.
,
2013
, “
Topology Optimization of Hinge-Free Compliant Mechanisms Using Level Set Methods
,”
Eng. Optim.
,
46
(
5
), pp.
580
605
.10.1080/0305215X.2013.786065
5.
Amstutz
,
S.
, and
Novotny
,
A. A.
,
2010
, “
Topological Optimization of Structures Subject to Von Mises Stress Constraints
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
407
420
.10.1007/s00158-009-0425-x
6.
Li
,
Q.
,
Steven
,
G. P.
,
Querin
,
O. M.
, and
Xie
,
Y.
,
1999
, “
Shape and Topology Design for Heat Conduction by Evolutionary Structural Optimization
,”
Int. J. Heat Mass Transfer
,
42
(
17
), pp.
3361
3371
.10.1016/S0017-9310(99)00008-3
7.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2009
, “
Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, Including Heat Conduction and Convection
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2721
2732
.10.1016/j.ijheatmasstransfer.2008.12.013
8.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
217
237
.10.1007/s00158-007-0217-0
9.
Xie
,
Y.
, and
Steven
,
G.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.10.1016/0045-7949(93)90035-C
10.
Chu
,
D.
,
Xie
,
Y.
,
Hira
,
A.
, and
Steven
,
G.
,
1996
, “
Evolutionary Structural Optimization for Problems With Stiffness Constraints
,”
Finite Elem. Anal. Des.
,
21
(
4
), pp.
239
251
.10.1016/0168-874X(95)00043-S
11.
Li
,
Q.
,
Steven
,
G.
, and
Xie
,
Y.
,
2001
, “
A Simple Checkerboard Suppression Algorithm for Evolutionary Structural Optimization
,”
Struct. Multidiscip. Optim.
,
22
(
3
), pp.
230
239
.10.1007/s001580100140
12.
Sethian
,
J. A.
, and
Wiegmann
,
A.
,
2000
, “
Structural Boundary Design via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
.10.1006/jcph.2000.6581
13.
Wang
,
M.
,
Wang
,
X. M.
, and
Guo
,
D. M.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.10.1016/S0045-7825(02)00559-5
14.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.10.1016/j.jcp.2003.09.032
15.
Yamasaki
,
S.
,
Nishiwaki
,
S.
,
Yamada
,
T.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2010
, “
A Structural Optimization Method Based on the Level Set Method Using a New Geometry-Based Re-Initialization Scheme
,”
Int. J. Numer. Methods Eng.
,
83
(
12
), pp.
1580
1624
.10.1002/nme.2874
16.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.10.1016/0021-9991(88)90002-2
17.
Osher
,
S.
, and
Santosa
,
F.
,
2001
, “
Level-Set Methods for Optimization Problem Involving Geometry and Constraints: I. Frequencies of a Two-Density Inhomogeneous Drum
,”
J. Comput. Phys.
,
171
(
1
), pp.
272
288
.10.1006/jcph.2001.6789
18.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
.10.1007/s00158-013-0912-y
19.
Luo
,
Z.
,
Tong
,
L.
,
Wang
,
M. Y.
, and
Wang
,
S.
,
2007
, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
680
705
.10.1016/j.jcp.2007.08.011
20.
Luo
,
J.
,
Luo
,
Z.
,
Chen
,
L.
,
Tong
,
L.
, and
Wang
,
M. Y.
,
2008
, “
A Semi-Implicit Level Set Method for Structural Shape and Topology Optimization
,”
J. Comput. Phys.
,
227
(
11
), pp.
5561
5581
.10.1016/j.jcp.2008.02.003
21.
Allaire
,
G.
,
de Gournay
,
F.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2005
, “
Structural Optimization Using Topological and Shape Sensitivity via a Level Set Method
,”
Control Cybern.
,
34
(
1
), pp.
59
80
.
22.
Suresh
,
K.
,
2010
, “
A 199-Line Matlab Code for Pareto-Optimal Tracing in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
42
(
5
), pp.
665
679
.10.1007/s00158-010-0534-6
23.
Amstutz
,
S.
, and
Andrä
,
H.
,
2006
, “
A New Algorithm for Topology Optimization Using a Level-Set Method
,”
J. Comput. Phys.
,
216
(
2
), pp.
573
588
.10.1016/j.jcp.2005.12.015
24.
Norato
,
J. A.
,
Bendsoe
,
M. P.
,
Haber
,
R. B.
, and
Tortorelli
,
D. A.
,
2007
, “
A Topological Derivative Method for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
375
386
.10.1007/s00158-007-0094-6
25.
Zhu
,
B.
, and
Zhang
,
X.
,
2012
, “
A New Level Set Method for Topology Optimization of Distributed Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
91
(
8
), pp.
843
871
.10.1002/nme.4296
26.
Xing
,
X.
,
Wei
,
P.
, and
Wang
,
M. Y.
,
2010
, “
A Finite Element-Based Level Set Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
82
(
7
), pp.
805
842
10.1002/nme.2785.
27.
Wei
,
P.
,
Wang
,
M. Y.
, and
Xing
,
X.
,
2010
, “
A Study on X-FEM in Continuum Structural Optimization Using a Level Set Model
,”
Comput.-Aided Des.
,
42
(
8
), pp.
708
719
.10.1016/j.cad.2009.12.001
28.
Luo
,
Z.
,
Zhang
,
N.
,
Ji
,
J.
, and
Wu
,
T.
,
2012
, “
A Meshfree Level-Set Method for Topological Shape Optimization of Compliant Multiphysics Actuators
,”
Comput. Methods Appl. Mech. Eng.
,
223–224
(
1
), pp.
133
152
.10.1016/j.cma.2012.02.011
29.
Zhou
,
M.
, and
Wang
,
M. Y.
,
2012
, “
A Semi-Lagrangian Level Set Method for Structural Optimization
,”
Struct. Multidiscip. Optim.
,
46
(
4
), pp.
487
501
.10.1007/s00158-012-0842-0
30.
Mei
,
Y.
, and
Wang
,
X.
,
2004
, “
A Level Set Method for Structural Topology Optimization and Its Applications
,”
Adv. Eng. Software
,
35
(
7
), pp.
415
441
.10.1016/j.advengsoft.2004.06.004
31.
Wang
,
X.
,
Wang
,
M.
, and
Guo
,
D.
,
2004
, “
Structural Shape and Topology Optimization in a Level-Set-Based Framework of Region Representation
,”
Comput. Methods Appl. Mech. Eng.
,
27
(
1–2
), pp.
1
19
10.1007/s00158-003-0363-y.
32.
Osher
,
S.
, and
Fedkiw
,
R.
,
2002
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer
,
New York
.
33.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Version, and Material Science
,
Cambridge University Press
, Cambridge, UK.
34.
Mulder
,
W.
,
Osher
,
S.
, and
Sethian
,
J. A.
,
1992
, “
Computing Interface Motion in Compressible Gas Dynamics
,”
J. Comput. Phys.
,
100
(
2
), pp.
209
228
.10.1016/0021-9991(92)90229-R
35.
Sokolowski
,
J.
, and
Zolesio
,
J. P.
,
1992
,
Introduction to Shape Optimization: Shape Sensitivity Analysis
,
Springer
,
New York
.
36.
Ta'asan
,
S.
,
2001
, “
Introduction to Shape Design and Control
.” Available at: http://www.math.cmu.edu/~shlomo/VKI-Lectures/lecture1/lecture1.html
37.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2876
2891
.10.1016/j.cma.2010.05.013
38.
Choi
,
K. K.
, and
Kim
,
N. H.
,
2005
,
Structural Sensitivity Analysis and Optimization 1: Linear Systems
,
Springer
,
New York
.
39.
Challis
,
V. J.
,
2010
, “
A Discrete Level-Set Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
453
464
.10.1007/s00158-009-0430-0
40.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.10.1007/s001580050176
You do not currently have access to this content.