A new approach for obtaining the crease patterns of foldable conical structures from crease patterns of cylindrical structures based on the origami folding theory using conformal mapping is presented in this paper. Mapping for flow with circulation, which is the so-called polar conversion, is demonstrated as an example. This mapping can be used to produce similar elements and maintain the regularity of fold lines. This is a significant advantage when the mapping approach is used to produce foldable structures, because it is relatively easy to control angles between fold lines. Thus, this proposed approach enables us to design complex structures from simple original structures systematically, maintaining advanced characteristics particular to origami such as folding up spatial structures onto a plane and expanding them at will. To the best of our knowledge, this study is the first attempt to disclose a comprehensive design approach that can simplify the conventional design process. The proposed design approach can be addressed for further foldable structures such as circular membranes and toroidal tubes to broaden the design possibility of foldable mechanical products.

References

1.
Miura
,
K.
,
1993
, “
Concepts of Deployable Space Structures
,”
Int. J. Space Struct.
,
8
(
1–2
), pp.
3
16
.
2.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
A New Concept for Solid Surface Deployable Antennas
,”
Acta Astronaut.
,
38
(
2
), pp.
103
113
.10.1016/0094-5765(96)00009-4
3.
Freeland
,
R. E.
,
Bilyeu
,
G. D.
,
Veal
,
G. R.
, and
Mikulas
,
M. M.
,
1998
, “
Inflatable Deployable Space Structures Technology Summary
,”
Proceedings of the 49th International Astronautical Congress
, Melbourne, Australia, Sept. 28, IAF-98-I.5.01.
4.
Johnson
,
L.
,
Young
,
R. M.
, and
Montgomery
,
E. E.
, IV
,
2007
, “
Recent Advances in Solar Sail Propulsion Systems at NASA
,”
Acta Astronaut.
,
61
(1–6), pp.
376
382
.10.1016/j.actaastro.2007.01.047
5.
Gioia
,
F.
,
Dureisseix
,
F.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.10.1115/1.4005601
6.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng., A
,
419
(1–2), pp.
131
137
.10.1016/j.msea.2005.12.016
7.
Wu
,
Z.
,
Hagiwara
,
I.
, and
Tao
,
X.
,
2007
, “
Optimization of Crush Characteristics of the Cylindrical Origami Structure
,”
Int. J. Veh. Des., Ser. A
,
43
(
1–4
), pp.
66
81
.10.1504/IJVD.2007.012296
8.
Zhao
,
X.
,
Hu
,
Y.
, and
Hagiwara
,
I.
,
2011
, “
Shape Optimization to Improve Energy Absorption Ability of Cylindrical Thin-Walled Origami Structure
,”
J. Comput. Sci. Technol.
,
5
(
3
), pp.
148
162
.10.1299/jcst.5.148
9.
Ma
,
J.
, and
You
,
Z.
,
2013
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern–Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.10.1115/1.4024405
10.
Fischer
,
S.
,
Drechsler
,
K.
,
Kilchert
,
S.
, and
Johnson
,
A.
,
2009
, “
Mechanical Tests for Foldcore Base Material Properties
,”
Composites, Part A
,
40
(
12
), pp.
1941
1952
.10.1016/j.compositesa.2009.03.005
11.
Vinson
,
J. R.
,
2005
, “
Sandwich Structures: Past, Present, and Future
,”
Proceedings of the 7th International Conference on Sandwich Structures
[Sandwich Structures 7: Advancing with Sandwich Structures and Materials], Springer, The Netherlands, pp.
3
12
.
12.
Saito
,
K.
,
Pellegrino
,
S.
, and
Nojima
,
T.
,
2014
, “
Manufacture of Arbitrary Cross-Section Composite Honeycomb Cores Based on Origami Techniques
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051011
.10.1115/1.4026824
13.
Ishida
,
S.
,
Nojima
,
T.
,
Kamei
,
T.
, and
Hagiwara
,
I.
,
2012
, “
Conformal Transformation and Application to Origami Design of Conical Shells
,”
Japan Soc. Ind. Appl. Math.
,
22
(
4
), pp.
301
318
(in Japanese).
14.
Ishida
,
S.
,
Nojima
,
T.
, and
Hagiwara
,
I.
,
2013
, “
Application of Conformal Maps to Origami-based Structures: New Method to Design Deployable Circular Membranes
,”
ASME
Paper No. DETC2013-12725.10.1115/DETC2013-12725
15.
Spiegel
,
M. R.
,
1964
,
Schaum's Outline of Theory and Problems of Complex Variables With an Introduction to Conformal Mapping and Its Application
,
McGraw-Hill Book Company
,
New York
.
16.
Leonhardt
,
U.
,
2006
, “
Optical Conformal Mapping
,”
Science
,
312
(
5781
), pp.
1777
1780
.10.1126/science.1126493
17.
Gu
,
X.
,
Wang
,
Y.
,
Chan
,
T. F.
,
Thompson
,
P. M.
, and
Yau
,
S.-T.
,
2004
, “
Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping
,”
IEEE Trans. Med. Imaging
,
23
(
8
), pp.
949
958
.10.1109/TMI.2004.831226
18.
Haker
,
S.
,
Angenent
,
S.
,
Tannenbaum
,
A.
,
Kikinis
,
R.
,
Sapiro
,
G.
, and
Halle
,
M.
,
2000
, “
Conformal Surface Parameterization for Texture Mapping
,”
IEEE Trans. Visual. Comput. Graphics
,
6
(
2
), pp.
181
189
.10.1109/2945.856998
19.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders Part 1: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.10.1115/1.2901553
20.
Nojima
,
T.
,
2000
, “
Development of Foldable Conical Shell
,”
Jpn. Soc. Mech. Eng., Ser. C
,
66
, pp.
2463
2469
(in Japanese).10.1299/kikaic.66.2463
21.
Nojima
,
T.
,
2002
, “
Modeling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
Int. J. Jpn. Soc. Mech. Eng., Ser. C
,
45
(
1
), pp.
364
370
.10.1299/jsmec.45.364
22.
Hunt
,
G. W.
, and
Ario
,
I.
,
2005
, “
Twist Buckling and the Foldable Cylinder: an Exercise in Origami
,”
Int. J. Non Linear Mech.
,
40
(
6
), pp.
833
843
.10.1016/j.ijnonlinmec.2004.08.011
You do not currently have access to this content.