Additively manufactured objects often exhibit directional dependencies in their structure due to the layered nature of the printing process. While this dependency has a significant impact on the object's functional performance, the problem of finding the best build orientation to maximize structural robustness remains largely unsolved. We introduce an optimization algorithm that addresses this issue by identifying the build orientation that maximizes the factor of safety (FS) of an input object under prescribed loading and boundary configurations. First, we conduct a minimal number of physical experiments to characterize the anisotropic material properties. Next, we use a surrogate-based optimization method to determine the build orientation that maximizes the minimum factor safety. The surrogate-based optimization starts with a small number of finite element (FE) solutions corresponding to different build orientations. The initial solutions are progressively improved with the addition of new solutions until the optimum orientation is computed. We demonstrate our method with physical experiments on various test models from different categories. We evaluate the advantages and limitations of our method by comparing the failure characteristics of parts printed in different orientations.

References

1.
Campbell
,
T.
,
Williams
,
C.
,
Ivanova
,
O.
, and
Garrett
,
B.
,
2011
, “
Could 3D Printing Change the World
,” Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council,
Washington, DC
.
2.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S.
,
2013
, “
A Review on 3D Micro-Additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1721
1754
.
3.
Scott
,
J.
,
Gupta
,
N.
,
Weber
,
C.
,
Newsome
,
S.
,
Wohlers
,
T.
, and
Caffrey
,
T.
,
2012
,
Additive Manufacturing: Status and Opportunities
,
Science and Technology Policy Institute
,
Washington, DC
.
4.
Gibson
,
I.
,
Rosen
,
D. W.
,
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
5.
Seepersad
,
C. C.
,
2014
, “
Challenges and Opportunities in Design for Additive Manufacturing
,”
3D Print. Addit. Manuf.
,
1
(
1
), pp.
10
13
.
6.
Lipson
,
H.
, and
Kurman
,
M.
,
2013
,
Fabricated: The New World of 3D Printing
,
Wiley
,
Indianapolis, IN
.
7.
Bickel
,
B.
,
Bächer
,
M.
,
Otaduy
,
M. A.
,
Lee
,
H. R.
,
Pfister
,
H.
,
Gross
,
M.
, and
Matusik
,
W.
,
2010
, “
Design and Fabrication of Materials With Desired Deformation Behavior
,”
ACM Trans. Graphics
,
29
(
3
), pp.
63:1
63:10
.
8.
Chen
,
D.
,
Levin
,
D. I. W.
,
Didyk
,
P.
,
Sitthi-Amorn
,
P.
, and
Matusik
,
W.
,
2013
, “
Spec2Fab: A Reducer-Tuner Model for Translating Specifications to 3D Prints
,”
ACM Trans. Graphics
,
32
(
4
), pp.
135:1
135:10
.
9.
Hašan
,
M.
,
Fuchs
,
M.
,
Matusik
,
W.
,
Pfister
,
H.
, and
Rusinkiewicz
,
S.
,
2010
, “
Physical Reproduction of Materials With Specified Subsurface Scattering
,”
ACM Trans. Graphics
,
29
(
3
), pp.
61:1
61:10
.
10.
Dong
,
Y.
,
Wang
,
J.
,
Pellacini
,
F.
,
Tong
,
X.
, and
Guo
,
B.
,
2010
, “
Fabricating Spatially-Varying Subsurface Scattering
,”
ACM Trans. Graphics
,
29
(
4
), pp.
62:1
62:10
.
11.
Prévost
,
R.
,
Whiting
,
E.
,
Lefebvre
,
S.
, and
Sorkine-Hornung
,
O.
,
2013
, “
Make It Stand: Balancing Shapes for 3D Fabrication
,”
ACM Trans. Graphics
,
32
(
4
), pp.
81:1
81:10
.
12.
Bächer
,
M.
,
Whiting
,
E.
,
Bickel
,
B.
, and
Sorkine-Hornung
,
O.
,
2014
, “
Spin-It: Optimizing Moment of Inertia for Spinnable Objects
,”
ACM Trans. Graphics
,
33
(
4
), pp.
96:1
96:10
.
13.
Alexander
,
P.
,
Allen
,
S.
, and
Dutta
,
D.
,
1998
, “
Part Orientation and Build Cost Determination in Layered Manufacturing
,”
Comput Aided Des.
,
30
(
5
), pp.
343
356
.
14.
Xu
,
F.
,
Loh
,
H.
, and
Wong
,
Y.
,
1999
, “
Considerations and Selection of Optimal Orientation for Different Rapid Prototyping Systems
,”
Rapid Prototyping J.
,
5
(
2
), pp.
54
60
.
15.
Ahn
,
D.
,
Kim
,
H.
, and
Lee
,
S.
,
2007
, “
Fabrication Direction Optimization to Minimize Post-Machining in Layered Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
593
606
.
16.
Canellidis
,
V.
,
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2009
, “
Genetic-Algorithm-Based Multi-Objective Optimization of the Build Orientation in Stereolithography
,”
Int. J. Adv. Manuf. Technol.
,
45
(
7–8
), pp.
714
730
.
17.
Thrimurthulu
,
K.
,
Pandey
,
P. M.
, and
Reddy
,
N. V.
,
2004
, “
Optimum Part Deposition Orientation in Fused Deposition Modeling
,”
Int. J. Mach. Tools Manuf.
,
44
(
6
), pp.
585
594
.
18.
Vanek
,
J.
,
Galicia
,
J. A. G.
, and
Benes
,
B.
,
2014
, “
Clever Support: Efficient Support Structure Generation for Digital Fabrication
,”
Comput. Graphics Forum
,
33
(
5
), pp.
117
125
.
19.
Ahn
,
S.-H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling Abs
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
.
20.
Bagsik
,
A.
, and
Schöppner
,
V.
,
2011
, “
Mechanical Properties of Fused Deposition Modeling Parts Manufactured With Ultem* 9085
,” ANTEC 2011, pp.
1284
1298
.
21.
El-Gizawy
,
A. S.
,
Corl
,
S.
, and
Graybill
,
B.
,
2011
, “
Process-Induced Properties of FDM Products
,”
ICMET
, CD-ROM, p. 7.
22.
Hill
,
N.
, and
Haghi
,
M.
,
2014
, “
Deposition Direction-Dependent Failure Criteria for Fused Deposition Modeling Polycarbonate
,”
Rapid Prototyping J.
,
20
(
3
), pp.
221
227
.
23.
Barclift
,
M. W.
, and
Williams
,
C. B.
,
2012
, “
Examining Variability in the Mechanical Properties of Parts Manufactured Via Polyjet Direct 3D Printing
,”
International Solid Freeform Fabrication Symposium
, pp.
6
8
.
24.
Kesy
,
A.
, and
Kotliński
,
J.
,
2010
, “
Mechanical Properties of Parts Produced by Using Polymer Jetting Technology
,”
Arch. Civil Mech. Eng.
,
10
(
3
), pp.
37
50
.
25.
Galeta
,
T.
,
Kladaric
,
I.
, and
Karakasic
,
M.
,
2013
, “
Influence of Processing Factors on the Tensile Strength of 3D-Printed Models
,”
Mater. Technol. (MTAEC9)
,
47
(
6
), pp.
781
788
.
26.
Hildebrand
,
K.
,
Bickel
,
B.
, and
Alexa
,
M.
,
2013
, “
Orthogonal Slicing for Additive Manufacturing
,”
Comput. Graphics
,
37
(
6
), pp.
669
675
.
27.
Zhou
,
Q.
,
Panetta
,
J.
, and
Zorin
,
D.
,
2013
, “
Worst-Case Structural Analysis
,”
ACM Trans. Graphics
,
32
(
4
), pp.
137:1
137:12
.
28.
Umetani
,
N.
, and
Schmidt
,
R.
,
2013
, “
Cross-Sectional Structural Analysis for 3D Printing Optimization
,”
SIGGRAPH Asia 2013 Technical Briefs, SA’13, ACM
, pp.
5:1
5:4
.
29.
Luo
,
L.
,
Baran
,
I.
,
Rusinkiewicz
,
S.
, and
Matusik
,
W.
,
2012
, “
Chopper: Partitioning Models Into 3D-Printable Parts
,”
ACM Trans. Graphics
,
31
(
6
), pp.
129:1
129:9
.
30.
Stava
,
O.
,
Vanek
,
J.
,
Benes
,
B.
,
Carr
,
N.
, and
Měch
,
R.
,
2012
, “
Stress Relief: Improving Structural Strength of 3D Printable Objects
,”
ACM Trans. Graphics
,
31
(
4
), pp.
48:1
48:11
.
31.
Wang
,
W.
,
Wang
,
T. Y.
,
Yang
,
Z.
,
Liu
,
L.
,
Tong
,
X.
,
Tong
,
W.
,
Deng
,
J.
,
Chen
,
F.
, and
Liu
,
X.
,
2013
, “
Cost-Effective Printing of 3D Objects With Skin-Frame Structures
,”
ACM Trans. Graphics
,
32
(
5
), pp.
1
10
.
32.
Lu
,
L.
,
Sharf
,
A.
,
Zhao
,
H.
,
Wei
,
Y.
,
Fan
,
Q.
,
Chen
,
X.
,
Savoye
,
Y.
,
Tu
,
C.
,
Cohen-Or
,
D.
,
Chen
,
B.
,
2014
, “
Build-To-Last: Strength to Weight 3D Printed Objects
,”
ACM Trans. Graphic
s
,
33
(
4
), pp.
97:1
97:10
.
33.
Suh
,
Y. S.
, and
Wozny
,
M. J.
,
1995
, “
Integration of a Solid Freeform Fabrication Process Into a Feature-Based CAD System Environment
,”
Solid Freeform Fabrication Symposium
, pp.
334
341
.http://sffsymposium.engr.utexas.edu/Manuscripts/1995/1995-40-Suh.pdf
34.
Thompson
,
D. C.
, and
Crawford
,
R. H.
,
1995
, “
Optimizing Part Quality With Orientation
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Georgia Institute of Technology
, Vol.
6
, pp.
362
368
.
35.
Shigley
,
J. E.
,
Budynas
,
R. G.
, and
Mischke
,
C. R.
,
2004
,
Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
36.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.
37.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
38.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
39.
Mueller
,
J.
,
2014
, “
MATSuMoTo: The Matlab Surrogate Model Toolbox for Computationally Expensive Black-Box Global Optimization Problems
,” preprint arXiv preprint arXiv:1404.4261.
40.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
1995
,
Response Surface Methodology: Process and Product in Optimization Using Designed Experiments
, 1st ed.,
Wiley
,
New York
.
41.
Simpson
,
T.
,
Poplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
42.
Powell
,
M. J.
,
1990
,
The Theory of Radial Basis Function Approximation in 1990
, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge
,
Cambridge, UK
.
43.
Mullur
,
A. A.
, and
Messac
,
A.
,
2005
, “
Extended Radial Basis Functions: More Flexible and Effective Metamodeling
,”
AIAA J.
,
43
(
6
), pp.
1306
1315
.
44.
Haykin
,
S.
,
1999
,
Neural Networks: A Comprehensive Foundation
,
Prentice-Hall
,
Upper Saddle River, NJ
.
45.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2004
, “
On the Use of Kriging Models to Approximate Deterministic Computer Models
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, pp.
481
492
.
46.
Girosi
,
F.
,
1998
, “
An Equivalence Between Sparse Approximation and Support Vector Machines
,”
Neural Comput.
,
10
(
6
), pp.
1455
1480
.
47.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
48.
Muller
,
J.
, and
Shoemaker
,
C. A.
,
2014
, “
Influence of Ensemble Surrogate Models and Sampling Strategy on the Solution Quality of Algorithms for Computationally Expensive Black-Box Global Optimization Problems
,”
J. Global Optim.
,
60
(
2
), pp.
123
144
.
49.
Mullur
,
A. A.
, and
Messac
,
A.
,
2006
, “
Metamodeling Using Extended Radial Basis Functions: A Comparative Approach
,”
Eng. Comput.
,
21
(
3
), pp.
203
217
.
You do not currently have access to this content.