Consideration set formation using noncompensatory screening rules is a vital component of real purchasing decisions with decades of experimental validation. Marketers have recently developed statistical methods that can estimate quantitative choice models that include consideration set formation via noncompensatory screening rules. But is capturing consideration within models of choice important for design? This paper reports on a simulation study of a vehicle portfolio design when households screen over vehicle body style built to explore the importance of capturing consideration rules for optimal designers. We generate synthetic market share data, fit a variety of discrete choice models to the data, and then optimize design decisions using the estimated models. Model predictive power and design profitability relative to ideal profits are compared as the amount of market data available increases. We find that even when estimated compensatory models provide relatively good predictive accuracy, they can lead to suboptimal design decisions when the population uses consideration behavior; convergence of compensatory models to noncompensatory behavior is likely to require unrealistic amounts of data; and modeling heterogeneity in noncompensatory screening is more valuable than heterogeneity in compensatory tradeoffs. This supports the claim that designers should carefully identify consideration behaviors before optimizing product portfolios. We also find that higher model predictive power does not necessarily imply more profitable design decisions; different model forms can provide “descriptive” rather than “predictive” information that is useful for design.

References

1.
Ben-Akiva
,
M.
, and
Lerman
,
S.
,
1985
,
Discrete Choice Analysis: Theory and Application to Travel Demand
, Vol.
22
,
The MIT Press
,
Cambridge, MA
.
2.
Train
,
K. E.
,
2009
,
Discrete Choice Methods With Simulation
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
3.
Wassenaar
,
H. J.
, and
Chen
,
W.
,
2003
, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
490
497
.10.1115/1.1587156
4.
Michalek
,
J. J.
,
Papalambros
,
P. Y.
, and
Skerlos
,
S. J.
,
2005
, “
A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1062
1070
.10.1115/1.1804195
5.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2005
, “
Linking Marketing and Engineering Product Design Decisions Via Analytical Target Cascading
,”
J. Prod. Innovation Manage.
,
22
(
1
), pp.
42
62
.10.1111/j.0737-6782.2005.00102.x
6.
Besharati
,
B.
,
Luo
,
L.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2006
, “
Multi-Objective Single Product Robust Optimization: An Integrated Design and Marketing Approach
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
884
892
.10.1115/1.2202889
7.
Shiau
,
C.-S. N.
,
Samaras
,
C.
,
Hauffe
,
R.
, and
Michalek
,
J. J.
,
2009
, “
Impact of Battery Weight and Charging Patterns on the Economic and Environmental Benefits of Plug-In Hybrid Vehicles
,”
Energy Policy
,
37
(
7
), pp.
2653
2663
.10.1016/j.enpol.2009.02.040
8.
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
, and
Koppelman
,
F. S.
,
2010
, “
Integrated Bayesian Hierarchical Choice Modeling to Capture Heterogeneous Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121010
.10.1115/1.4002972
9.
MacDonald
,
E.
,
Whitefoot
,
K.
,
Allison
,
J.
,
Papalambros
,
P. Y.
, and
Gonzalez
,
R.
,
2010
, “
An Investigation of Sustainability, Preference, and Profitability in Design Optimization
,”
ASME
Paper No. DETC2010-2905510.1115/DETC2010-29055.
10.
Michalek
,
J. J.
,
Ebbes
,
P.
,
Adigüzel
,
F.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2011
, “
Enhancing Marketing With Engineering: Optimal Product Line Design for Heterogeneous Markets
,”
Int. J. Res. Mark.
,
28
(
1
), pp.
1
12
.10.1016/j.ijresmar.2010.08.001
11.
Payne
,
J. W.
,
1976
, “
Task Complexity and Contingent Processing in Decision Making: An Information Search and Protocol Analysis
,”
Organ. Behav. Hum. Perform.
,
16
(
2
), pp.
366
387
.10.1016/0030-5073(76)90022-2
12.
Rieskamp
,
J.
, and
Hoffrage
,
U.
,
2008
, “
Inferences Under Time Pressure: How Opportunity Costs Affect Strategy Selection
,”
Acta Psychol.
,
127
(
2
), pp.
258
276
.10.1016/j.actpsy.2007.05.004
13.
Bröder
,
A.
,
2000
, “
Assessing the Empirical Validity of the ‘Take-the-Best’ Heuristic as a Model of Human Probabilistic Inference
,”
J. Exp. Psychol.: Learn. Mem. Cognit.
,
26
(
5
), pp.
1332
1346
10.1037//0278-7393.26.5.1332.
14.
Bröder
,
A.
, and
Schiffer
,
S.
,
2003
, “
Take the Best Versus Simultaneous Feature Matching: Probabilistic Inferences From Memory and Effects of Representation Format
,”
J. Exp. Psychol.
,
132
(
2
), pp.
277
293
.10.1037/0096-3445.132.2.277
15.
Gigerenzer
,
G.
, and
Gaissmaier
,
W.
,
2011
, “
Heuristic Decision Making
,”
Annu. Rev. Psychol.
,
62
, pp.
451
482
.10.1146/annurev-psych-120709-145346
16.
Shocker
,
A. D.
,
Ben-Akiva
,
M.
,
Boccara
,
B.
, and
Nedungadi
,
P.
,
1991
, “
Consideration Set Influence on Consumer Decision-Making and Choice: Issues, Models, and Suggestions
,”
Mark. Lett.
,
2
(
3
), pp.
181
197
.10.1007/BF02404071
17.
Roberts
,
J.
, and
Lattin
,
J.
,
1997
, “
Consideration: Review of Research and Prospects for Future Insights
,”
J. Mark. Res.
,
34
(
3
), pp.
406
410
.10.2307/3151902
18.
Hauser
,
J.
,
Ding
,
M.
, and
Gaskin
,
S.
,
2009
, “
Non-Compensatory (and Compensatory) Models of Consideration-Set Decisions
,”
The Sawtooth Software Conference
,
Sequim
,
WA
, pp.
207
232
.
19.
Dawes
,
R. M.
,
1964
, “
Social Selection Based on Multidimensional Criteria
,”
J. Abnorm. Psychol.
,
68
(
1
), pp.
104
109
.10.1037/h0047832
20.
Einhorn
,
H. J.
,
1970
, “
The Use of Nonlinear, Noncompensatory Models in Decision Making
,”
Psychol. Bull.
,
73
(
3
), pp.
221
230
.10.1037/h0028695
21.
Tversky
,
A.
,
1972
, “
Elimination by Aspects: A Theory of Choice
,”
Psychol. Rev.
,
79
(
4
), pp.
281
299
.10.1037/h0032955
22.
Hauser
,
J. R.
,
2014
, “
Consideration-Set Heuristics
,”
J. Bus. Res.
,
67
(
8
), pp.
1688
1699
.10.1016/j.jbusres.2014.02.015
23.
Gilbride
,
T.
, and
Allenby
,
G.
,
2004
, “
A Choice Model With Conjunctive, Disjunctive, and Compensatory Screening Rules
,”
Mark. Sci.
,
23
(
3
), pp.
391
406
.10.1287/mksc.1030.0032
24.
Jedidi
,
K.
, and
Kohli
,
R.
,
2005
, “
Probabilistic Subset-Conjunctive Models for Heterogeneous Consumers
,”
J. Mark. Res.
,
42
(
4
), pp.
483
494
.10.1509/jmkr.2005.42.4.483
25.
Ding
,
M.
, and
Hauser
,
J.
,
2011
, “
Unstructured Direct Elicitation of Decision Rules
,”
J. Mark. Res.
,
48
(
1
), pp.
116
127
.10.1509/jmkr.48.1.116
26.
Yee
,
M.
,
Dahan
,
E.
,
Hauser
,
J. R.
, and
Orlin
,
J.
,
2007
, “
Greedoid-Based Noncompensatory Inference
,”
Mark. Sci.
,
26
(
4
), pp.
532
549
.10.1287/mksc.1060.0213
27.
Hauser
,
J. R.
,
1978
, “
Testing the Accuracy, Usefulness and Significance of Probabilistic Models: An Information-Theoretic Approach
,”
Oper. Res.
,
26
(
3
), pp.
406
421
.10.1287/opre.26.3.406
28.
Kohli
,
R.
, and
Jedidi
,
K.
,
2007
, “
Representation and Inference of Lexicographic Preference Models and Their Variants
,”
Mark. Sci.
,
26
(
3
), pp.
380
399
.10.1287/mksc.1060.0241
29.
Swait
,
J.
,
2001
, “
A Non-Compensatory Choice Model Incorporating Attribute Cutoffs
,”
Transp. Res. Part B
,
35
(
10
), pp.
903
928
.10.1016/S0191-2615(00)00030-8
30.
Hauser
,
J.
, and
Toubia
,
O.
,
2010
, “
Disjunctions of Conjunctions, Cognitive Simplicity, and Consideration Sets
,”
J. Mark. Res.
,
47
(
3
), pp.
485
496
.10.1509/jmkr.47.3.485
31.
Dzyabura
,
D.
, and
Hauser
,
J. R.
,
2011
, “
Active Machine Learning for Consideration Heuristics
,”
Mark. Sci.
,
30
(
5
), pp.
801
819
.10.1287/mksc.1110.0660
32.
Johnson
,
E. J.
, and
Meyer
,
R. J.
,
1984
, “
Compensatory Choice Models of Noncompensatory Processes: The Effect of Varying Context
,”
J. Consum. Res.
,
11
(
1
), pp.
528
541
.10.1086/208989
33.
Andrews
,
R.
, and
Manrai
,
A.
,
1998
, “
Simulation Experiments in Choice Simplification: The Effects of Task and Context on Forecasting Performance
,”
J. Mark. Res.
,
35
(
2
), pp.
198
209
.10.2307/3151848
34.
Andrews
,
R. L.
,
Ainslie
,
A.
, and
Currim
,
I. S.
,
2008
, “
On the Recoverability of Choice Behaviors With Random Coefficients Choice Models in the Context of Limited Data and Unobserved Effects
,”
Manage. Sci.
,
54
(
1
), pp.
83
99
.10.1287/mnsc.1070.0749
35.
Besharati
,
B.
,
Azarm
,
S.
, and
Kannan
,
P.
,
2006
, “
A Decision Support System for Product Design Selection: A Generalized Purchase Modeling Approach
,”
Decis. Support Syst.
,
42
(
1
), pp.
333
350
.10.1016/j.dss.2005.01.002
36.
Morrow
,
W. R.
,
Long
,
M.
, and
MacDonald
,
E. F.
,
2014
, “
Market-System Design Optimization With Consider-Then-Choose Models
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031003
.10.1115/1.4026094
37.
Kropko
,
J.
,
2011
, “
New Approaches to Discrete Choice and Time-Series Cross-Section Methodology for Political Research
,” Ph.D. thesis,
University of North Carolina at Chapel Hill
,
Chapel Hill, NC
.
38.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
,
2005
, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
514
523
.10.1115/1.1897408
39.
Liu
,
Q.
, and
Arora
,
N.
,
2011
, “
Efficient Choice Designs for a Consider-Then-Choose Model
,”
Mark. Sci.
,
30
(
2
), pp.
321
338
.10.1287/mksc.1100.0629
40.
Manrai
,
A. K.
, and
Andrews
,
R. L.
,
1998
, “
Two-Stage Discrete Choice Models for Scanner Panel Data: An Assessment of Process and Assumptions
,”
Eur. J. Oper. Res.
,
111
(
2
), pp.
193
215
.10.1016/S0377-2217(98)00145-3
41.
Bettman
,
J. R.
,
1980
, “
Effects of Prior Knowledge and Experience and Phase of the Choice Process on Consumer Decision Processes: A Protocol Analysis
,”
J. Consum. Res.
,
7
(
3
), pp.
234
248
.10.1086/208812
42.
Green
,
P. E.
, and
Krieger
,
A. M.
,
1988
, “
Completely Unacceptable Levels in Conjoint Analysis: A Cautionary Note
,”
J. Mark. Res.
,
25
(
3
), pp.
293
300
.10.2307/3172532
43.
Jedidi
,
K.
, and
Kohli
,
R.
,
1996
, “
Consideration Sets in Conjoint Analysis
,”
J. Mark. Res.
,
33
(
3
), pp.
364
372
.10.2307/3152132
44.
Urban
,
G.
,
Kim
,
J.
,
MacDonald
,
E.
,
Hauser
,
J. R.
, and
Dzyabura
,
D.
,
2010
, “
Developing Consideration Rules for Durable Goods Markets
,”
The INFORMS Marketing Science Conference
,
Cologne
,
Germany
, June 17–19.
45.
Swait
,
J.
, and
Ben-Akiva
,
M.
,
1987
, “
Incorporating Random Constraints in Discrete Models of Choice Set Generation
,”
Transp. Res. Part B
,
21
(
2
), pp.
91
102
.10.1016/0191-2615(87)90009-9
46.
Ben-Akiva
,
M.
, and
Boccara
,
B.
,
1995
, “
Discrete Choice Models With Latent Choice Sets
,”
Int. J. Res. Mark.
,
12
(
1
), pp.
9
24
.10.1016/0167-8116(95)00002-J
47.
Chiang
,
J.
,
Chib
,
S.
, and
Narasimhan
,
C.
,
1999
, “
Markov Chain Monte Carlo and Models of Consideration Set and Parameter Heterogeneity
,”
J. Econometrics
,
89
(
1–2
), pp.
223
248
.10.1016/S0304-4076(98)00062-1
48.
Punj
,
G.
, and
Brookes
,
R.
,
2002
, “
The Influence of Pre-Decisional Constraints on Information Search and Consideration Set Formation in New Automobile Purchases
,”
Int. J. Res. Mark.
,
19
(
4
), pp.
383
400
.10.1016/S0167-8116(02)00100-3
49.
Long
,
M.
, and
Morrow
,
W. R.
,
2014
, “
Should Optimal Designers Worry About Consideration?
,”
ASME
Paper No. DETC2014-3449310.1115/DETC2014-34493.
50.
Bech
,
M.
, and
Gyrd-Hansen
,
D.
,
2005
, “
Effects Coding in Discrete Choice Experiments
,”
Health Econ.
,
14
(
10
), pp.
1079
1083
.10.1002/hec.984
51.
Boyd
,
J.
, and
Mellman
,
R. E.
,
1980
, “
The Effect of Fuel Economy Standards on the U.S. Automotive Market: An Hedonic Demand Analysis
,”
Transp. Res. Part A
,
14
(
5
), pp.
367
378
.10.1016/0191-2607(80)90055-2
52.
Berry
,
S.
,
Levinsohn
,
J.
, and
Pakes
,
A.
,
2004
, “
Differentiated Products Demand Systems From a Combination of Micro and Macro Data: The New Car Market
,”
J. Political Econ.
,
112
(
1
), pp.
68
105
.10.1086/379939
53.
Daly
,
A.
,
1987
, “
Estimating ‘Tree’ Logit Models
,”
Transp. Res. Part B
,
21
(
4
), pp.
251
267
.10.1016/0191-2615(87)90026-9
54.
McFadden
,
D.
,
1978
,
Modelling the Choice of Residential Location
,
Institute of Transportation Studies, University of California
,
Berkeley, CA
.
55.
Whitefoot
,
K.
,
Fowlie
,
M.
, and
Skerlos
,
S.
,
2012
, “
Product Design Response to Industrial Policy: Evaluation Fuel Economy Standards Using an Engineering Model of Endogenous Product Design
,” Paper presented at the 2012 AEA Annual Meeting, Chicago.
56.
Wenzel
,
T.
,
2010
, “
Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation
,” Lawrence Berkeley National Laboratory, Berkeley, CA, Technical Report No. LBNL-3143E.
57.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.10.1137/S0036144504446096
58.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.10.1214/aoms/1177729694
59.
Berry
,
S.
,
Levinsohn
,
J.
, and
Pakes
,
A.
,
1995
, “
Automobile Prices in Market Equilibrium
,”
Econometrica
,
63
(
4
), pp.
841
890
.10.2307/2171802
60.
Goldberg
,
P. K.
,
1995
, “
Product Differentiation and Oligopoly in International Markets: The Case of the U.S. Automobile Industry
,”
Econometrica
,
63
(
4
), pp.
891
951
.10.2307/2171803
61.
Golob
,
T. F.
,
Bunch
,
D. S.
, and
Brownstone
,
D.
,
1997
, “
A Vehicle Use Forecasting Model Based on Revealed and Stated Vehicle Type Choice and Utilisation Data
,”
J. Transp. Econ. Policy
,
31
(
1
), pp.
69
92
https://escholarship.org/uc/item/2bz335vw.
62.
Morrow
,
W. R.
,
Mineroff
,
J.
, and
Whitefoot
,
K. S.
,
2014
, “
Numerically Stable Design Optimization With Price Competition
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081002
.10.1115/1.4025703
63.
Swait
,
J.
,
2001
, “
Choice Set Generation Within the Generalized Extreme Value Family of Discrete Choice Models
,”
Transp. Res. Part B
,
35
(
7
), pp.
643
666
.10.1016/S0191-2615(00)00029-1
64.
Bierlaire
,
M.
,
2006
, “
A Theoretical Analysis of the Cross-Nested Logit Model
,”
Ann. Oper. Res.
,
144
(
1
), pp.
287
300
.10.1007/s10479-006-0015-x
You do not currently have access to this content.